Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_4_a8, author = {A. V. Borisov and I. S. Mamaev}, title = {Symmetries and reduction in nonholonomic mechanics}, journal = {Russian journal of nonlinear dynamics}, pages = {763--823}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/} }
A. V. Borisov; I. S. Mamaev. Symmetries and reduction in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 763-823. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/
[1] Albouy A., On the force fields which are homogeneous of degree $-3$, 2014, 6 pp., arXiv: 1412.4150v1
[2] Albouy A., “There is a projective dynamics”, Eur. Math. Soc. Newsl., 89 (2013), 37–43 | MR | Zbl
[3] Albouy A., Chenciner A., “Le problème des $n$ corps et les distances mutuelles”, Invent. Math., 131:1 (1998), 151–184 | DOI | MR | Zbl
[4] Aref H., Stremler M. A., “On the motion of three point vortices in a periodic strip”, J. Fluid Mech., 314 (1996), 1–25 | DOI | MR | Zbl
[5] Balseiro P., Fernandez O. E., Reduction of nonholonomic systems in two stages, 2014, 36 pp., arXiv: 1409.0456v2
[6] Birkhoff G. D., “Dynamical systems with two degrees of freedom”, Trans. Amer. Math. Soc., 18:2 (1917), 199–300 | DOI | MR | Zbl
[7] Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 085202, 11 pp. | DOI | MR | Zbl
[8] Bloch A., Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer, New York, 2003, 503 pp. | MR
[9] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Murray R. M., “Nonholonomic mechanical systems with symmetry”, Arch. Rational Mech. Anal., 136:1 (1996), 21–99 | DOI | MR | Zbl
[10] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl
[11] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 116:5 (2011), 443–464 | DOI | MR
[12] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Lie algebras in vortex dynamics and celestial mechanics: 4”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl
[13] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems: The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41 | DOI | MR | Zbl
[14] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[15] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[16] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[17] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328 | DOI | MR
[18] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl
[19] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[20] Borisov A. V., Mamaev I. S., Kilin A. A., “Two-body problem on a sphere: Reduction, stochasticity, periodic orbits”, Regul. Chaotic Dyn., 9:3 (2004), 265–279 | DOI | MR | Zbl
[21] Borisov A. V., Pavlov A. E., “Dynamics and statics of vortices on a plane and a sphere: 1”, Regul. Chaotic Dyn., 3:1 (1998), 28–38 | DOI | MR | Zbl
[22] Bottema O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593 | DOI | Zbl
[23] Broer H., Simó C., “Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena”, Bol. Soc. Brasil. Mat. (N. S.), 29:2 (1998), 253–293 | DOI | MR | Zbl
[24] Cartan É., Lessons on integral invariants, Hermann, Paris, 1922, 229 pp.
[25] de León M., “A historical review on nonholomic mechanics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106:1 (2012), 191–224 | MR | Zbl
[26] Dullin H. R., “The Lie – Poisson structure of the reduced $n$-body problem”, Nonlinearity, 26:6 (2013), 1565–1579 | DOI | MR | Zbl
[27] Engel F., Faber K., Die Liesche Theorie der Partiellen Differentialgleichungen Erster Ordnung, B. G. Teubner, Leipzig, 1932, 367 pp.
[28] Fassò F., Sansonetto N., “An elemental overview of the nonholonomic Noether theorem”, Int. J. Geom. Methods Mod. Phys., 6:8 (2009), 1343–1355 | DOI | MR | Zbl
[29] García-Naranjo L. C., “Reduction of almost Poisson brackets for nonholonomic systems on Lie Groups”, Regul. Chaotic Dyn., 12:4 (2007), 365–388 | DOI | MR | Zbl
[30] Hamel G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl
[31] Hamel G., “Über nichtholonome Systeme”, Math. Ann., 92:1–2 (1924), 33–41 | DOI | MR | Zbl
[32] Hermans J., “A symmetric sphere rolling on a surface”, Nonlinearity, 8:4 (1995), 493–515 | DOI | MR | Zbl
[33] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A, 29:3 (1996), 667–674 | DOI | MR | Zbl
[34] Jellett J. H., A treatise on the theory on friction, MacMillan, London, 1872, 220 pp.; Джеллет Д. Х., Трактат по теории трения, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, Москва – Ижевск, 2009, 264 с.
[35] Kim B., “Routh symmetry in the Chaplygin's rolling ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670 | DOI | MR | Zbl
[36] Koiller J., “Reduction of some classical non-holonomic systems with symmetry”, Arch. Rational Mech. Anal., 118:2 (1992), 113–148 | DOI | MR | Zbl
[37] Koon W. S., Marsden J. E., “Poisson reduction for nonholonomic mechanical systems with symmetry”, Rep. Math. Phys., 42:1–2 (1998), 101–134 | DOI | MR | Zbl
[38] Lagrange J. L., Mécanique analytique, v. 2, Cambridge Univ. Press, Cambridge, 2009, 392 pp.
[39] Laura E., “Sul moto parallelo ad un piano di un fluido in cui vi sono $N$ vortici elementari”, Atti della R. Acc. delle scienze di Torino, 37 (1902), 469–476 | Zbl
[40] Lie S., “Begründung einer Invarianten-Theorie der Berührungs-Transformationen”, Math. Ann., 8:2 (1874), 215–303 | DOI | MR
[41] Lie S., Theorie der Transformationsgruppen:, In 3 Vols, 2nd ed., AMS, Providence, R.I., 1970, 2043 pp.
[42] Lie S., Vorlesungen über Differentialgleichungen: Mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1912, 575 pp. | Zbl
[43] Olver P. J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, 2nd ed., Springer, New York, 2000, 513 pp. | MR | Zbl
[44] Ostrowski J. P., The mechanics and control of undulatory robotic locomotion, PhD Thesis, California Institute of Technology, Pasadena, 1996, 149 pp.
[45] Shchepetilov A. V., “Reduction of the two-body problem with central interaction on simply connected spaces of constant sectional curvature”, J. Phys. A, 31:29 (1998), 6279–6291 | DOI | MR | Zbl
[46] Smale S., “Topology and mechanics: 1”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR | Zbl
[47] Stückler B., “Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen”, Arch. Appl. Mech., 23:4 (1955), 279–287
[48] Stability of motion: A collection of early scientific publications by E. J. Routh, W. K. Clifford, C. Sturm, and M. Bôcher, ed. A. T. Fuller, Taylor Francis, London, 1975, 228 pp. | MR
[49] van der Schaft A. J., Maschke B. M., “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl
[50] van Kampen E. R., Wintner A., “On a symmetrical canonical reduction of the problem of three bodies”, Amer. J. Math., 59:1 (1937), 153–166 | DOI | MR
[51] Volterra V., “Sopra una classe di equazioni dinamiche”, Atti della R. Acc. delle scienze di Torino, 33 (1897/98), 451–475
[52] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Univ. Press, Cambridge, 1988, 456 pp. | MR | Zbl
[53] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, 4-e izd., MTsNMO, Moskva, 2012, 384 pp.
[54] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 416 pp.
[55] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132 | DOI | MR | Zbl
[56] Borisov A. V., Lutsenko S. G., Mamaev I. S., “Dinamika kolesnogo ekipazha na ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 4, 39–48
[57] Borisov A. V., Mamaev I. S., “Integriruemaya sistema s neintegriruemoi svyazyu”, Matem. zametki, 80:1 (2006), 131–134 | DOI | MR | Zbl
[58] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl
[59] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, 2-e izd., Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp. | MR
[60] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2003, 296 pp. | MR
[61] Borisov A. V., Mamaev I. S., “Nelineinye skobki Puassona i izomorfizmy v dinamike”, Regulyarnaya i khaoticheskaya dinamika, 2:3–4 (1997), 72–89 | MR | Zbl
[62] Borisov A. V., Mamaev I. S., “Reduktsiya zadachi dvukh tel na ploskosti Lobachevskogo”, Nelineinaya dinamika, 2 (2006), 279–285
[63] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI
[64] Borisov A. V., Mamaev I. S., “Uravneniya dvizheniya negolonomnykh sistem”, UMN, 70:6(426) (2015), 203–204 | DOI
[65] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225 | MR | Zbl
[66] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR
[67] Voronets P. V., Preobrazovaniya uravnenii dinamiki s pomoschyu lineinykh integralov (s prilozheniem k zadache o $n$ telakh), Izv. un-ta Sv. Vladimira, 47, no. 1–2, Kiev, 1907, 192 pp.
[68] Kozlov V. V., Obschaya teoriya vikhrei, 2-e izd., ispr. i dopoln., Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2013, 324 pp.
[69] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[70] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 429 pp. | MR
[71] Kozlov V. V., “O povedenii tsiklicheskikh peremennykh v integriruemykh sistemakh”, PMM, 77:2 (2013), 179–190 | MR | Zbl
[72] Kozlov V. V., Kolesnikov N. N., “O teoremakh dinamiki”, PMM, 42:1 (1978), 28–33 | MR
[73] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 520 pp.
[74] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, MTsNMO, Moskva, 2005, 584 pp.
[75] Puankare A., Izbrannye trudy, V 3-kh tt., v. 2, Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, Moskva, 1972, 360 pp.
[76] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314