Symmetries and reduction in nonholonomic mechanics
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 763-823.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of the problem of the constructive reduction of nonholonomic systems with symmetries. The connection of reduction with the presence of the simplest tensor invariants (first integrals and symmetry fields) is shown. All theoretical constructions are illustrated by examples encountered in applications. In addition, the paper contains a short historical and critical sketch covering the contribution of various researchers to this problem.
Keywords: reduction, symmetry, tensor invariant, first integral, symmetry group, symmetry field, nonholonomic constraint, Noether theorem.
@article{ND_2015_11_4_a8,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Symmetries and reduction in nonholonomic mechanics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {763--823},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Symmetries and reduction in nonholonomic mechanics
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 763
EP  - 823
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/
LA  - ru
ID  - ND_2015_11_4_a8
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Symmetries and reduction in nonholonomic mechanics
%J Russian journal of nonlinear dynamics
%D 2015
%P 763-823
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/
%G ru
%F ND_2015_11_4_a8
A. V. Borisov; I. S. Mamaev. Symmetries and reduction in nonholonomic mechanics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 763-823. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a8/

[1] Albouy A., On the force fields which are homogeneous of degree $-3$, 2014, 6 pp., arXiv: 1412.4150v1

[2] Albouy A., “There is a projective dynamics”, Eur. Math. Soc. Newsl., 89 (2013), 37–43 | MR | Zbl

[3] Albouy A., Chenciner A., “Le problème des $n$ corps et les distances mutuelles”, Invent. Math., 131:1 (1998), 151–184 | DOI | MR | Zbl

[4] Aref H., Stremler M. A., “On the motion of three point vortices in a periodic strip”, J. Fluid Mech., 314 (1996), 1–25 | DOI | MR | Zbl

[5] Balseiro P., Fernandez O. E., Reduction of nonholonomic systems in two stages, 2014, 36 pp., arXiv: 1409.0456v2

[6] Birkhoff G. D., “Dynamical systems with two degrees of freedom”, Trans. Amer. Math. Soc., 18:2 (1917), 199–300 | DOI | MR | Zbl

[7] Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 085202, 11 pp. | DOI | MR | Zbl

[8] Bloch A., Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer, New York, 2003, 503 pp. | MR

[9] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Murray R. M., “Nonholonomic mechanical systems with symmetry”, Arch. Rational Mech. Anal., 136:1 (1996), 21–99 | DOI | MR | Zbl

[10] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl

[11] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 116:5 (2011), 443–464 | DOI | MR

[12] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Lie algebras in vortex dynamics and celestial mechanics: 4”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl

[13] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems: The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41 | DOI | MR | Zbl

[14] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[15] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[16] Borisov A. V., Mamaev I. S., “Rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[17] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328 | DOI | MR

[18] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl

[19] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[20] Borisov A. V., Mamaev I. S., Kilin A. A., “Two-body problem on a sphere: Reduction, stochasticity, periodic orbits”, Regul. Chaotic Dyn., 9:3 (2004), 265–279 | DOI | MR | Zbl

[21] Borisov A. V., Pavlov A. E., “Dynamics and statics of vortices on a plane and a sphere: 1”, Regul. Chaotic Dyn., 3:1 (1998), 28–38 | DOI | MR | Zbl

[22] Bottema O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593 | DOI | Zbl

[23] Broer H., Simó C., “Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena”, Bol. Soc. Brasil. Mat. (N. S.), 29:2 (1998), 253–293 | DOI | MR | Zbl

[24] Cartan É., Lessons on integral invariants, Hermann, Paris, 1922, 229 pp.

[25] de León M., “A historical review on nonholomic mechanics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106:1 (2012), 191–224 | MR | Zbl

[26] Dullin H. R., “The Lie – Poisson structure of the reduced $n$-body problem”, Nonlinearity, 26:6 (2013), 1565–1579 | DOI | MR | Zbl

[27] Engel F., Faber K., Die Liesche Theorie der Partiellen Differentialgleichungen Erster Ordnung, B. G. Teubner, Leipzig, 1932, 367 pp.

[28] Fassò F., Sansonetto N., “An elemental overview of the nonholonomic Noether theorem”, Int. J. Geom. Methods Mod. Phys., 6:8 (2009), 1343–1355 | DOI | MR | Zbl

[29] García-Naranjo L. C., “Reduction of almost Poisson brackets for nonholonomic systems on Lie Groups”, Regul. Chaotic Dyn., 12:4 (2007), 365–388 | DOI | MR | Zbl

[30] Hamel G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl

[31] Hamel G., “Über nichtholonome Systeme”, Math. Ann., 92:1–2 (1924), 33–41 | DOI | MR | Zbl

[32] Hermans J., “A symmetric sphere rolling on a surface”, Nonlinearity, 8:4 (1995), 493–515 | DOI | MR | Zbl

[33] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A, 29:3 (1996), 667–674 | DOI | MR | Zbl

[34] Jellett J. H., A treatise on the theory on friction, MacMillan, London, 1872, 220 pp.; Джеллет Д. Х., Трактат по теории трения, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, Москва – Ижевск, 2009, 264 с.

[35] Kim B., “Routh symmetry in the Chaplygin's rolling ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670 | DOI | MR | Zbl

[36] Koiller J., “Reduction of some classical non-holonomic systems with symmetry”, Arch. Rational Mech. Anal., 118:2 (1992), 113–148 | DOI | MR | Zbl

[37] Koon W. S., Marsden J. E., “Poisson reduction for nonholonomic mechanical systems with symmetry”, Rep. Math. Phys., 42:1–2 (1998), 101–134 | DOI | MR | Zbl

[38] Lagrange J. L., Mécanique analytique, v. 2, Cambridge Univ. Press, Cambridge, 2009, 392 pp.

[39] Laura E., “Sul moto parallelo ad un piano di un fluido in cui vi sono $N$ vortici elementari”, Atti della R. Acc. delle scienze di Torino, 37 (1902), 469–476 | Zbl

[40] Lie S., “Begründung einer Invarianten-Theorie der Berührungs-Transformationen”, Math. Ann., 8:2 (1874), 215–303 | DOI | MR

[41] Lie S., Theorie der Transformationsgruppen:, In 3 Vols, 2nd ed., AMS, Providence, R.I., 1970, 2043 pp.

[42] Lie S., Vorlesungen über Differentialgleichungen: Mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1912, 575 pp. | Zbl

[43] Olver P. J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, 2nd ed., Springer, New York, 2000, 513 pp. | MR | Zbl

[44] Ostrowski J. P., The mechanics and control of undulatory robotic locomotion, PhD Thesis, California Institute of Technology, Pasadena, 1996, 149 pp.

[45] Shchepetilov A. V., “Reduction of the two-body problem with central interaction on simply connected spaces of constant sectional curvature”, J. Phys. A, 31:29 (1998), 6279–6291 | DOI | MR | Zbl

[46] Smale S., “Topology and mechanics: 1”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR | Zbl

[47] Stückler B., “Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen”, Arch. Appl. Mech., 23:4 (1955), 279–287

[48] Stability of motion: A collection of early scientific publications by E. J. Routh, W. K. Clifford, C. Sturm, and M. Bôcher, ed. A. T. Fuller, Taylor Francis, London, 1975, 228 pp. | MR

[49] van der Schaft A. J., Maschke B. M., “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl

[50] van Kampen E. R., Wintner A., “On a symmetrical canonical reduction of the problem of three bodies”, Amer. J. Math., 59:1 (1937), 153–166 | DOI | MR

[51] Volterra V., “Sopra una classe di equazioni dinamiche”, Atti della R. Acc. delle scienze di Torino, 33 (1897/98), 451–475

[52] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Univ. Press, Cambridge, 1988, 456 pp. | MR | Zbl

[53] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, 4-e izd., MTsNMO, Moskva, 2012, 384 pp.

[54] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 416 pp.

[55] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (2010), 71–132 | DOI | MR | Zbl

[56] Borisov A. V., Lutsenko S. G., Mamaev I. S., “Dinamika kolesnogo ekipazha na ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 4, 39–48

[57] Borisov A. V., Mamaev I. S., “Integriruemaya sistema s neintegriruemoi svyazyu”, Matem. zametki, 80:1 (2006), 131–134 | DOI | MR | Zbl

[58] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[59] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, 2-e izd., Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2005, 576 pp. | MR

[60] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2003, 296 pp. | MR

[61] Borisov A. V., Mamaev I. S., “Nelineinye skobki Puassona i izomorfizmy v dinamike”, Regulyarnaya i khaoticheskaya dinamika, 2:3–4 (1997), 72–89 | MR | Zbl

[62] Borisov A. V., Mamaev I. S., “Reduktsiya zadachi dvukh tel na ploskosti Lobachevskogo”, Nelineinaya dinamika, 2 (2006), 279–285

[63] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[64] Borisov A. V., Mamaev I. S., “Uravneniya dvizheniya negolonomnykh sistem”, UMN, 70:6(426) (2015), 203–204 | DOI

[65] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225 | MR | Zbl

[66] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR

[67] Voronets P. V., Preobrazovaniya uravnenii dinamiki s pomoschyu lineinykh integralov (s prilozheniem k zadache o $n$ telakh), Izv. un-ta Sv. Vladimira, 47, no. 1–2, Kiev, 1907, 192 pp.

[68] Kozlov V. V., Obschaya teoriya vikhrei, 2-e izd., ispr. i dopoln., Institut kompyuternykh issledovanii, Moskva – Izhevsk, 2013, 324 pp.

[69] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[70] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 429 pp. | MR

[71] Kozlov V. V., “O povedenii tsiklicheskikh peremennykh v integriruemykh sistemakh”, PMM, 77:2 (2013), 179–190 | MR | Zbl

[72] Kozlov V. V., Kolesnikov N. N., “O teoremakh dinamiki”, PMM, 42:1 (1978), 28–33 | MR

[73] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 520 pp.

[74] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, MTsNMO, Moskva, 2005, 584 pp.

[75] Puankare A., Izbrannye trudy, V 3-kh tt., v. 2, Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, Moskva, 1972, 360 pp.

[76] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314