Experimental research of dynamic of spherical robot of combined type
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 721-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of experimental investigations for the rolling of a spherical robot of combined type actuated by an internal wheeled vehicle with rotor on a horizontal plane. The control of spherical robot based on nonholonomic dynamical by means of gaits. We consider the motion of the spherical robot in case of constant control actions, as well as impulse control. A number of experiments have been carried out confirming the importance of rolling friction.
Keywords: spherical robot of combined type, dynamic model, control by means of gaits, rolling friction.
@article{ND_2015_11_4_a6,
     author = {A. A. Kilin and Yu. L. Karavaev},
     title = {Experimental research of dynamic of spherical robot of combined type},
     journal = {Russian journal of nonlinear dynamics},
     pages = {721--734},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/}
}
TY  - JOUR
AU  - A. A. Kilin
AU  - Yu. L. Karavaev
TI  - Experimental research of dynamic of spherical robot of combined type
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 721
EP  - 734
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/
LA  - ru
ID  - ND_2015_11_4_a6
ER  - 
%0 Journal Article
%A A. A. Kilin
%A Yu. L. Karavaev
%T Experimental research of dynamic of spherical robot of combined type
%J Russian journal of nonlinear dynamics
%D 2015
%P 721-734
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/
%G ru
%F ND_2015_11_4_a6
A. A. Kilin; Yu. L. Karavaev. Experimental research of dynamic of spherical robot of combined type. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 721-734. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/

[1] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 1:1 (2012), 3–23 | DOI

[2] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, Pa., 2006, 6 pp.

[3] Ylikorpi T., Suomela J., “Ball-shaped robots”, Climbing and walking robots: Towards new applications, ed. H. Zhang, InTech, Vienna, 2007, 235–256; Иликорпи Т., Суомела Ю., “Сферические роботы”, Мобильные роботы: Робот-колесо и робот-шар, ред. А. В. Борисов, И. С. Мамаев, Ю. Л. Караваев, Институт компьютерных исследований, М.–Ижевск, 2013, 29–50

[4] Karavaev Yu. L., Kilin A. A., “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152 | DOI | MR | Zbl

[5] Ivanova T. B., Pivovarova E. N., “Dinamika i upravlenie sfericheskim robotom s osesimmetrichnym mayatnikovym privodom”, Nelineinaya dinamika, 9:3 (2013), 507–520

[6] Svinin M., Bai Y., Yamamoto M., “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656–661

[7] Zhan Q., “Motion planning of a spherical mobile robot”, Motion and operation planning of robotic systems, eds. G. Carbone, F. Gomez-Bravo, Springer, Cham, 2015, 361–381

[8] Gajbhiye S., Banavar R. N., “Geometric modeling and local controllability of a spherical mobile robot actuated by an internal pendulum”, Int. J. Robust Nonlinear Control, 2015

[9] Borisov A. V., Mamaev I. S., “Two non-holonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl

[10] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl

[11] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl

[12] Morinaga A., Svinin M., Yamamoto M., “A motion planning strategy for a spherical rolling robot driven by two internal rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993–1002 | DOI

[13] Kilin A. A., Pivovarova E. N., Ivanova T. B., “Spherical robot of combined type: Dynamics and control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI | MR

[14] Koiller J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl

[15] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | MR | Zbl