Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_4_a6, author = {A. A. Kilin and Yu. L. Karavaev}, title = {Experimental research of dynamic of spherical robot of combined type}, journal = {Russian journal of nonlinear dynamics}, pages = {721--734}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/} }
TY - JOUR AU - A. A. Kilin AU - Yu. L. Karavaev TI - Experimental research of dynamic of spherical robot of combined type JO - Russian journal of nonlinear dynamics PY - 2015 SP - 721 EP - 734 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/ LA - ru ID - ND_2015_11_4_a6 ER -
A. A. Kilin; Yu. L. Karavaev. Experimental research of dynamic of spherical robot of combined type. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 721-734. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a6/
[1] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 1:1 (2012), 3–23 | DOI
[2] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, Pa., 2006, 6 pp.
[3] Ylikorpi T., Suomela J., “Ball-shaped robots”, Climbing and walking robots: Towards new applications, ed. H. Zhang, InTech, Vienna, 2007, 235–256; Иликорпи Т., Суомела Ю., “Сферические роботы”, Мобильные роботы: Робот-колесо и робот-шар, ред. А. В. Борисов, И. С. Мамаев, Ю. Л. Караваев, Институт компьютерных исследований, М.–Ижевск, 2013, 29–50
[4] Karavaev Yu. L., Kilin A. A., “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152 | DOI | MR | Zbl
[5] Ivanova T. B., Pivovarova E. N., “Dinamika i upravlenie sfericheskim robotom s osesimmetrichnym mayatnikovym privodom”, Nelineinaya dinamika, 9:3 (2013), 507–520
[6] Svinin M., Bai Y., Yamamoto M., “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot”, Proc. of the 2015 IEEE Internat. Conf. on Robotics and Automation (ICRA), 656–661
[7] Zhan Q., “Motion planning of a spherical mobile robot”, Motion and operation planning of robotic systems, eds. G. Carbone, F. Gomez-Bravo, Springer, Cham, 2015, 361–381
[8] Gajbhiye S., Banavar R. N., “Geometric modeling and local controllability of a spherical mobile robot actuated by an internal pendulum”, Int. J. Robust Nonlinear Control, 2015
[9] Borisov A. V., Mamaev I. S., “Two non-holonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl
[11] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl
[12] Morinaga A., Svinin M., Yamamoto M., “A motion planning strategy for a spherical rolling robot driven by two internal rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993–1002 | DOI
[13] Kilin A. A., Pivovarova E. N., Ivanova T. B., “Spherical robot of combined type: Dynamics and control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI | MR
[14] Koiller J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl
[15] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | MR | Zbl