On stability of permanent rotation of a disk that collides with an horizontal plane
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 685-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of the motion of a thin homogeneous disk in a uniform gravitational field above a fixed horizontal plane is investigated. Collisions between the disk and the plane are assumed to be absolutely elastic, and friction is negligible. In unperturbed motion, the disk rotates at a constant angular velocity about its vertical diameter, and its center of gravity makes periodic oscillations along a fixed vertical as a result of collisions. The stability problem depends on two dimensionless parameters characterizing the magnitude of the angular velocity of the disk and the height of his jump above the plane in the unperturbed motion. An exact solution of the problem of stability is obtained for all physically admissible values of these parameters.
Keywords: stability, map, canonical transformations.
@article{ND_2015_11_4_a4,
     author = {A. P. Markeev},
     title = {On stability of permanent rotation of a disk that collides with an horizontal plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {685--707},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a4/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On stability of permanent rotation of a disk that collides with an horizontal plane
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 685
EP  - 707
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a4/
LA  - ru
ID  - ND_2015_11_4_a4
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On stability of permanent rotation of a disk that collides with an horizontal plane
%J Russian journal of nonlinear dynamics
%D 2015
%P 685-707
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a4/
%G ru
%F ND_2015_11_4_a4
A. P. Markeev. On stability of permanent rotation of a disk that collides with an horizontal plane. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 685-707. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a4/

[1] Appel P., Teoreticheskaya mekhanika, v. 2, Dinamika sistemy. Analiticheskaya mekhanika, Fizmatgiz, Moskva, 1960, 487 pp.

[2] Markeev A. P., “Issledovanie ustoichivosti periodicheskogo dvizheniya tverdogo tela pri nalichii soudarenii s gorizontalnoi ploskostyu”, PMM, 58:3 (1994), 71–81 | MR | Zbl

[3] Alekhin A. K., Markeev A. P., “Ob ustoichivosti periodicheskogo dvizheniya diska nad gorizontalnoi ploskostyu”, MTT, 2000, no. 4, 16–22

[4] Puankare A., Izbrannye trudy, v. 2, Novye metody nebesnoi mekhaniki, Nauka, Moskva, 1972, 999 pp.

[5] Markeev A. P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, MTT, 1996, no. 2, 37–54 | MR

[6] Uitteker E. T., Analiticheskaya dinamika, Gostekhizdat, Moskva – Leningrad, 1937, 500 pp.

[7] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, Moskva, 1978, 312 pp.

[8] Markeev A. P., “Ob ustoichivosti nepodvizhnykh tochek otobrazhenii, sokhranyayuschikh ploschad”, Nelineinaya dinamika, 11:3 (2015), 503–545 | MR

[9] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 532 pp. | MR

[10] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, Moskva, 1973, 167 pp.

[11] Zigel K., Mozer Yu., Lektsii po nebesnoi mekhanike, RKhD, Izhevsk, 2001, 384 pp.

[12] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2009, 416 pp.

[13] Markeev A. P., Teoreticheskaya mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva – Izhevsk, 2007, 592 pp. | MR

[14] Markeev A. P., “Ob odnom sposobe analiticheskogo predstavleniya otobrazhenii, sokhranyayuschikh ploschad”, PMM, 78:5 (2014), 611–624 | MR

[15] Markeev A. P., “Ob odnom sposobe issledovaniya ustoichivosti polozhenii ravnovesiya gamiltonovykh sistem”, MTT, 2004, no. 6, 3–12

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, V 3-kh tt., v. 2, Fizmatlit, Moskva, 1966, 607 pp.