The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 671-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of a time-periodic two-degree-of-freedom Hamiltonian system in the neighborhood of the equilibrium being stable in the linear approximation is considered. The weak Raman thirdorder resonance and the strong fourth-order resonance are assumed to occur simultaneously in the system. The behavior of the approximated (model) system is studied in the stability domain of the fourth-order resonance. Areas of the parameters (coefficients of the normalized Hamiltonian) are found for which all motions of the system are bounded if they begin in a sufficiently small neighborhood of the equilibrium. Boundedness domain estimate is obtained. А disturbing effect of the double resonance on the motion of the system within the boundedness domain is described.
Keywords: Hamiltonian system, canonical transformation, method of normal forms, double resonance, stability.
@article{ND_2015_11_4_a3,
     author = {O. V. Kholostova},
     title = {The interaction of resonances of the third and fourth orders in a {Hamiltonian} two-degree-of-freedom system},
     journal = {Russian journal of nonlinear dynamics},
     pages = {671--683},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a3/}
}
TY  - JOUR
AU  - O. V. Kholostova
TI  - The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 671
EP  - 683
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a3/
LA  - ru
ID  - ND_2015_11_4_a3
ER  - 
%0 Journal Article
%A O. V. Kholostova
%T The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system
%J Russian journal of nonlinear dynamics
%D 2015
%P 671-683
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a3/
%G ru
%F ND_2015_11_4_a3
O. V. Kholostova. The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 671-683. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a3/

[1] Korteweg D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anormale — vibrations de relations, — dans les mécanismes à plusieurs degrés de liberté”, Arch. Néerl. sci. exactes et natur. Sér. 2, 1 (1898), 229–260 | Zbl

[2] Beth H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Arch. Néerl. sci. exactes et natur. Sér. 2, 15 (1910), 246–283 | Zbl

[3] Beth H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires (suite)”, Arch. Néerl. sci. exactes et natur. Sér. 3A, 1 (1912), 185–213

[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[5] Kunitsyn A. L., Markeev A. P., “Ustoichivost v rezonansnykh sluchayakh”, Itogi nauki i tekhniki. Ser. Obschaya mekhanika, 4, VINITI, M., 1979, 58–139 | MR

[6] Markeev A. P., “Ustoichivost gamiltonovykh sistem”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatgiz, M., 2001, 114–130

[7] Kholostova O. V., Issledovanie nelineinykh kolebanii gamiltonovykh sistem s odnoi stepenyu svobody pri rezonansakh, Uchebn. posob., MAI, M., 2011, 96 pp.

[8] Kunitsyn A. L., “Ob ustoichivosti v kriticheskom sluchae chisto mnimykh kornei pri vnutrennem rezonanse”, Differentsialnye uravneniya, 7:9 (1971), 1704–1706

[9] Khazina G. G., “Nekotorye voprosy ustoichivosti pri nalichii rezonansov”, PMM, 38:1 (1974), 56–65 | MR | Zbl

[10] Kunitsyn A. L., Medvedev S. V., “Ob ustoichivosti pri nalichii neskolkikh rezonansov”, PMM, 41:3 (1977), 422–429 | MR

[11] Kunitsyn A. L., Tashimov L. T., Nekotorye zadachi ustoichivosti nelineinykh rezonansnykh sistem, Gylym, Alma-Ata, 1990, 196 pp. | MR

[12] Khazin L. G., Ob ustoichivosti polozheniya ravnovesiya gamiltonovykh sistem differentsialnykh uravnenii: (Vzaimodeistvie rezonansov tretego poryadka), Preprint No 133, In-t prikladnoi matematiki AN SSSR, M., 1981, 20 pp. | MR | Zbl

[13] Khazin L. G., “Vzaimodeistvie rezonansov tretego poryadka v zadachakh ustoichivosti gamiltonovykh sistem”, PMM, 48:3 (1984), 494–498 | MR | Zbl

[14] Markeev A. P., “O kratnom rezonanse v lineinykh sistemakh Gamiltona”, Dokl. RAN, 402:3 (2005), 339–343

[15] Markeev A. P., “O kratnom parametricheskom rezonanse v sistemakh Gamiltona”, PMM, 70:2 (2006), 200–220 | MR | Zbl

[16] Markeev A. P., Lineinye gamiltonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositelno tsentra mass, NITs «Regulyarnaya i khaoticheskaya dinamika», In-t kompyuternykh issledovanii, M.–Izhevsk, 2009, 396 pp.

[17] Kholostova O. V., “O dvizheniyakh gamiltonovoi sistemy s dvumya stepenyami svobody pri nalichii kratnykh rezonansov tretego poryadka”, Nelineinaya dinamika, 8:2 (2012), 267–288

[18] Kholostova O., “Stability of triangular libration points in a planar restricted elliptic three body problem in cases of double resonances”, Int. J. Nonlinear Mech., 73 (2015), 64–68 | DOI

[19] Yakubovich V. A., Starzhinskii V. M., Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987, 328 pp. | MR