Saw-tooth waves in hysteretic media with a saturation of nonlinear losses
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 647-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of experimental data of the study of amplitude-dependent internal friction phenomena in polycrystalline solids the inelastic hysteretic state equation with a saturation of nonlinear losses is proposed. Theoretical analysis of the asymmetric saw-tooth waves propagation in such media is carried out. The regularities (amplitude dependent losses and changes in the propagation velocity) are determined for the characteristics of nonlinear wave and its higher harmonic amplitudes. The graphical analysis of form of the wave and evolution of its spectral components is carried out.
Keywords: hysteresis, amplitude-dependent internal friction, saturation of nonlinear losses, saw-tooth acoustic waves.
@article{ND_2015_11_4_a1,
     author = {V. E. Nazarov and S. B. Kiyashko},
     title = {Saw-tooth waves in hysteretic media with a saturation of nonlinear losses},
     journal = {Russian journal of nonlinear dynamics},
     pages = {647--655},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_4_a1/}
}
TY  - JOUR
AU  - V. E. Nazarov
AU  - S. B. Kiyashko
TI  - Saw-tooth waves in hysteretic media with a saturation of nonlinear losses
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 647
EP  - 655
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_4_a1/
LA  - ru
ID  - ND_2015_11_4_a1
ER  - 
%0 Journal Article
%A V. E. Nazarov
%A S. B. Kiyashko
%T Saw-tooth waves in hysteretic media with a saturation of nonlinear losses
%J Russian journal of nonlinear dynamics
%D 2015
%P 647-655
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_4_a1/
%G ru
%F ND_2015_11_4_a1
V. E. Nazarov; S. B. Kiyashko. Saw-tooth waves in hysteretic media with a saturation of nonlinear losses. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 4, pp. 647-655. http://geodesic.mathdoc.fr/item/ND_2015_11_4_a1/

[1] Davidenkov N. N., “O rasseyanii energii pri vibratsiyakh”, ZhTF, 8:6 (1938), 483–499

[2] Read Th. A., “The internal friction on single metal crystals”, Phys. Rev., 58:4 (1940), 371–380 | DOI | MR

[3] Granato A., Lücke K., “Theory of mechanical damping due to dislosations”, J. Appl. Phys., 27:5 (1956), 583–593 | DOI | Zbl

[4] L. G. Merkulov (red.), Ultrazvukovye metody issledovaniya dislokatsii, Sb. st., per. s angl. i nem., IIL, M., 1963, 376 pp.

[5] Fizicheskaya akustika, v. 4, Chast A: Primeneniya fizicheskoi akustiki v kvantovoi fizike i fizike tverdogo tela, Mir, M., 1969, 375 pp.

[6] Niblett D., Uilks Dzh., “Vnutrennee trenie v metallakh, svyazannoe s dislokatsiyami”, UFN, 80:1 (1963), 125–187 | DOI

[7] Nazarov V. E., “Vliyanie struktury medi na ee akusticheskuyu nelineinost”, FMM, 71:3 (1991), 172–178

[8] Golyandin S. N., Kustov S. B., Sapozhnikov K. V., Emelyanov Yu. A., Sinapi A. B., Nikanorov S. P., Robinson U. Kh., “Vliyanie temperatury i deformatsii na amplitudno-zavisimoe vnutrennee trenie vysokochistogo alyuminiya”, FTT, 40:10 (1998), 1839–1844

[9] Sapozhnikov K. V., Golyandin S. N., Kustov S. B., “Amplitudnaya zavisimost vnutrennego treniya i defekta modulya Yunga polikristallicheskogo indiya”, FTT, 52:1 (2010), 43–47

[10] Sapozhnikov K. V., Golyandin S. N., Kustov S. B., “Temperaturnaya zavisimost vnutrennego treniya polikristallicheskogo indiya”, FTT, 52:12 (2010), 2341–2348

[11] Nazarov V. E., “Ob amplitudnoi zavisimosti vnutrennego treniya tsinka”, Akust. zhurn., 46:2 (2000), 228–233

[12] Nazarov V. E., Kolpakov A. B., “Experimental investigations of nonlinear acoustic phenomena in polycrystalline zinc”, J. Acoust. Soc. Am., 107:4 (2000), 1915–1921 | DOI

[13] Nazarov V. E., “Amplitudno-zavisimoe vnutrennee trenie svintsa”, FMM, 88:4 (1999), 82–90

[14] Golyandin S. N., Sapozhnikov K. V., Kustov S. B., “Akusticheskoe issledovanie protsessov stareniya martensitnoi fazy splavov na osnove medi s effektom pamyati formy”, FTT, 47:4 (2005), 614–621

[15] Asano S., “Theory of nonlinear damping due to dislocation hysteresis”, J. Phys. Soc. Jap., 29:4 (1970), 952–963 | DOI

[16] Lebedev A. B., “Amplitudno-zavisimyi defekt modulya uprugosti v osnovnykh modelyakh dislokatsionnogo gisterezisa”, FTT, 41:7 (1999), 1214–1221

[17] Nazarov V. E., “Rasprostranenie odnopolyarnogo impulsa v srede s gisterezisnoi nelineinostyu”, Akust. zhurn., 43:2 (1997), 81–85

[18] Nazarov V. E., Kiyashko S. B., “Amplitudno-zavisimoe vnutrennee trenie i generatsiya garmonik v sredakh s gisterezisnoi nelineinostyu”, Nelineinaya dinamika, 10:3 (2014), 297–307

[19] McCall K. R., Guyer R. A., “Equation of state and wave propagation in hysteretic nonlinear elastic materials”, J. Geophys. Res., 99:B12 (1994), 23887–23897 | DOI

[20] Gusev V., “On the interaction of countepropagating acoustic waves in resonant rods composed of materials with hysteretic quadratic nonlinearity”, J. Acoust. Soc. Am., 117:4 (2005), 1850–1857 | DOI | MR

[21] Guyer R. A., Johnson P. A., “Nonlinear mesoscopic elasticity: Evidence for a new class materials”, Phys. Today, 1999, no. 4, 30–35 | DOI

[22] Nazarov V. E., Radostin A. V., Nonlinear acoustic waves in micro-inhomogeneous solids, Wiley, Chichester, 2015, 264 pp.

[23] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt., v. 7, Teoriya uprugosti, 5-e izd., Fizmatlit, M., 2003, 264 pp.