On the fixed points stability for the area-preserving maps
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 503-545.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study area-preserving maps. The map is assumed to have a fixed point and be analytic in its small neighborhood. The main result is a developed constructive algorithm for studying the stability of the fixed point in critical cases when members of the first degrees (up to the third degree inclusive) in a series specifying the map do not solve the issue of stability. As an application, the stability problem is solved for a vertical periodic motion of a ball in the presence of impacts with an ellipsoidal absolutely smooth cylindrical surface with a horizontal generatrix. Study of area-preserving maps originates in the Poincaré section surfaces method [1]. The classical works by Birkhoff [2–4], Levi-Civita [5], Siegel [6, 7], Moser [7–9] are devoted to fundamental aspects of this problem. Further consideration of the objectives is contained in the works by Russman [10], Sternberg [11], Bruno [12, 13], Belitsky [14] and other authors.
Keywords: map, canonical transformations, Hamilton system, stability.
@article{ND_2015_11_3_a4,
     author = {A. P. Markeev},
     title = {On the fixed points stability for the area-preserving maps},
     journal = {Russian journal of nonlinear dynamics},
     pages = {503--545},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a4/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On the fixed points stability for the area-preserving maps
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 503
EP  - 545
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a4/
LA  - ru
ID  - ND_2015_11_3_a4
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On the fixed points stability for the area-preserving maps
%J Russian journal of nonlinear dynamics
%D 2015
%P 503-545
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_3_a4/
%G ru
%F ND_2015_11_3_a4
A. P. Markeev. On the fixed points stability for the area-preserving maps. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 503-545. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a4/

[1] Puankare A., Izbrannye trudy, v. 2, Novye metody nebesnoi mekhaniki, Nauka, Moskva, 1972, 999 pp.

[2] Birkhoff G. D., “Dynamical systems with two degrees of freedom”, Trans. Amer. Math. Soc., 18:2 (1917), 199–300 | DOI | MR | Zbl

[3] Birkhoff G. D., “Surface transformations and their dynamical applications”, Acta Math., 43:1 (1922), 1–119 | DOI | MR

[4] Birkgof D., Dinamicheskie sistemy, UdGU, Izhevsk, 1999, 408 pp.

[5] Levi-Civita T., “Sorpa alcuni criteri di instabilita”, Ann. Mat. Pura Appl. (3), 5:1 (1901), 221–305 | DOI | MR

[6] Zigel K. L., Lektsii po nebesnoi mekhanike, IIL, Moskva, 1959, 300 pp.

[7] Zigel K., Mozer Yu., Lektsii po nebesnoi mekhanike, RKhD, Izhevsk, 2001, 384 pp.

[8] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, Moskva, 1973, 167 pp.

[9] Mozer Yu., Ustoichivye i khaoticheskie dvizheniya v dinamicheskikh sistemakh, RKhD, Moskva – Izhevsk, 2010, 184 pp.

[10] Rüssmann H., “Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen”, Math. Ann., 137 (1959), 64–77 | DOI | MR | Zbl

[11] Sternberg Sh., “The structure of local homeomorphisms: 3”, Amer. J. Math., 81:3 (1959), 578–604 | DOI | MR | Zbl

[12] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii: 1”, Tr. MMO, 25, 1971, 119–262 | Zbl

[13] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii: 2”, Tr. MMO, 26, 1972, 199–239 | Zbl

[14] Belitskii G. R., Normalnye formy, invarianty i lokalnye otobrazheniya, Naukova dumka, Kiev, 1979, 176 pp. | MR

[15] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, Moskva – Leningrad, 1949, 551 pp.

[16] Markeev A. P., Teoreticheskaya mekhanika, RKhD, Moskva – Izhevsk, 2007, 592 pp. | MR

[17] Markeev A. P., “Ob odnom sposobe analiticheskogo predstavleniya otobrazhenii, sokhranyayuschikh ploschad”, PMM, 78:5 (2014), 611–624 | MR

[18] Markeev A. A., “The method of pointwise mappings in the stability problem of two-segment trajectories of Birkhoff billiards”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2. Adv. Math. Sci., 168, ed. V. V. Kozlov, AMS, Providence, R.I., 1995, 211–226 | MR

[19] Markeev A. P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, MTT, 1996, no. 2, 37–54 | MR

[20] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, Moskva, 1966, 532 pp. | MR

[21] Neimark Yu. I., “Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii: 1”, Izv. vuzov. Radiofizika, 1:1 (1958), 41–66

[22] Mozer J., “The analytic invariants of an area-preserving mapping near a hyperbolic fixed point”, Comm. Pure Appl. Math., 9:4 (1956), 673–692 | DOI | MR

[23] Markeev A. P., “Uproschenie struktury form tretei i chetvertoi stepenei v razlozhenii funktsii Gamiltona pri pomoschi lineinogo preobrazovaniya”, Nelineinaya dinamika, 10:4 (2014), 447–464 | Zbl

[24] Markeev A. P., “On the Birkhoff transformation in the case of complete degeneracy of quadratic part of the Hamiltonian”, Regul. Chaotic Dyn., 20:3 (2015), 309–316 | DOI | MR | Zbl

[25] Ivanov A. P., Sokolskii A. G., “Ob ustoichivosti neavtonomnoi gamiltonovoi sistemy pri parametricheskom rezonanse osnovnogo tipa”, PMM, 44:6 (1980), 963–970 | MR | Zbl

[26] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 414 pp.

[27] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Matem. sb., 17:2 (1893), 253–333

[28] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, Moskva, 1978, 312 pp.

[29] Markeev A. P., “O kriticheskom sluchae rezonansa chetvertogo poryadka v gamiltonovoi sisteme s odnoi stepenyu svobody”, PMM, 61:3 (1997), 369–376 | MR | Zbl

[30] Appel P., Teoreticheskaya mekhanika, v. 2, Dinamika sistemy. Analiticheskaya mekhanika, Fizmatgiz, Moskva, 1960, 487 pp.

[31] Markeev A. P., “O proizvodyaschei funktsii sokhranyayuschego ploschad otobrazheniya v odnoi zadache o dvizhenii tyazhelogo shara nad tsilindricheskoi poverkhnostyu”, Tr. 18-go Mezhdunarodnogo simpoziuma «Dinamika vibroudarnykh (silno nelineinykh) sistem», IMASh RAN, Moskva, 2015, 179–184