Oscillatory chain with grounding support in conditions of acoustic vacuum
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 487-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we investigate dynamics of a string with uniformly distributed discrete masses without tension both analytically and numerically. Each mass is also coupled to the ground through lateral spring which provides effect of cubic grounding support. The most important limiting case of low-energy transversal oscillations is considered accounting for geometric nonlinearity. Since such oscillations are governed by motion equations with purely cubic stiffness nonlinearities, the chain behaves as a nonlinear acoustic vacuum.We obtained adequate analytical description of resonance non-stationary processes in the system which correspond to intensive energy exchange between parts (clusters) of the chain in low-frequency domain. Conditions of energy localization are given. Obtained analytical results agree well with results of computer simulations. The considered system is shown to be able to be used as very effective energy sink.
Keywords: nonlinear dynamics, nonlinear normal mode, limiting phase trajectory, energy exchange, localization.
@article{ND_2015_11_3_a3,
     author = {I. P. Koroleva (Kikot) and L. I. Manevich},
     title = {Oscillatory chain with grounding support in conditions of acoustic vacuum},
     journal = {Russian journal of nonlinear dynamics},
     pages = {487--502},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/}
}
TY  - JOUR
AU  - I. P. Koroleva (Kikot)
AU  - L. I. Manevich
TI  - Oscillatory chain with grounding support in conditions of acoustic vacuum
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 487
EP  - 502
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/
LA  - ru
ID  - ND_2015_11_3_a3
ER  - 
%0 Journal Article
%A I. P. Koroleva (Kikot)
%A L. I. Manevich
%T Oscillatory chain with grounding support in conditions of acoustic vacuum
%J Russian journal of nonlinear dynamics
%D 2015
%P 487-502
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/
%G ru
%F ND_2015_11_3_a3
I. P. Koroleva (Kikot); L. I. Manevich. Oscillatory chain with grounding support in conditions of acoustic vacuum. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 487-502. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/

[1] Kovaleva A. S., Manevitch L. I., “Resonance energy transport and exchange in oscillator arrays”, Phys. Rev. E., 88:2 (2013), 022904, 10 pp. | DOI

[2] Manevitch L. I., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl

[3] Manevitch L. I., Kovaleva M. A., Pilipchuk V. N., “Non-conventional synchronization of weakly coupled active oscillators”, Europhys. Lett., 101:5 (2013), 50002, 5 pp. | DOI

[4] Manevitch L. I., Gourdon E., Lamarque C.-H., “Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system”, J. Appl. Mech., 74:6 (2007), 1078–1086 | DOI | MR

[5] Manevitch L. I., Kovaleva M. A., Manevitch E. L., “Limiting phase trajectories and resonance energy transfer in a system of two coupled oscillators”, Math. Probl. Eng., 2010 (2010), 760479, 24 pp. | DOI | MR | Zbl

[6] Manevitch L. I., Kovaleva A. S., Shepelev D. S., “Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near $1:1$ resonance”, Phys. D, 240:1 (2011), 1–12 | DOI | MR | Zbl

[7] Manevitch L. I., Vakakis A. F., “Nonlinear oscillatory acoustic vacuum”, SIAM J. Appl. Math., 74:6 (2014), 1742–1762 | DOI | MR | Zbl

[8] Vakakis A. F., Gendelman O. V., Bergman L. A., McFarland D. M., Kerschen G., Lee Y. S., Nonlinear targeted energy transfer in mechanical and structural systems, Solid Mech. Appl., 156, Springer, Dordrecht, 2009, 1032 pp.

[9] Silina K. G., Kikot I. P., Manevitch L. I., “Energy exchange and localization in the planar motion of a weightless beam carrying two discrete masses”, Regul. Chaotic Dyn., 20:2 (2015), 109–122 | DOI | MR | Zbl

[10] Starosvetsky Y., Ben-Meir Y., “Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum”, Phys. Rev. E., 87:6 (2013), 062919, 18 pp. | DOI

[11] Kikot I.P., Manevich L. I., “Svyazannye ostsillyatory na uprugoi podlozhke v usloviyakh akusticheskogo vakuuma”, Nelineinaya dinamika, 10:3 (2014), 245–263

[12] Kovaleva M. A., Manevich L. I., Pilipchuk V. N., “O novom tipe sinkhronizatsii generatorov s zhestkim vozbuzhdeniem”, ZhETF, 144:2(8) (2013), 428–437