Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_3_a3, author = {I. P. Koroleva (Kikot) and L. I. Manevich}, title = {Oscillatory chain with grounding support in conditions of acoustic vacuum}, journal = {Russian journal of nonlinear dynamics}, pages = {487--502}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/} }
TY - JOUR AU - I. P. Koroleva (Kikot) AU - L. I. Manevich TI - Oscillatory chain with grounding support in conditions of acoustic vacuum JO - Russian journal of nonlinear dynamics PY - 2015 SP - 487 EP - 502 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/ LA - ru ID - ND_2015_11_3_a3 ER -
I. P. Koroleva (Kikot); L. I. Manevich. Oscillatory chain with grounding support in conditions of acoustic vacuum. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 487-502. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a3/
[1] Kovaleva A. S., Manevitch L. I., “Resonance energy transport and exchange in oscillator arrays”, Phys. Rev. E., 88:2 (2013), 022904, 10 pp. | DOI
[2] Manevitch L. I., “New approach to beating phenomenon in coupled nonlinear oscillatory chains”, Arch. Appl. Mech., 77:5 (2007), 301–312 | DOI | Zbl
[3] Manevitch L. I., Kovaleva M. A., Pilipchuk V. N., “Non-conventional synchronization of weakly coupled active oscillators”, Europhys. Lett., 101:5 (2013), 50002, 5 pp. | DOI
[4] Manevitch L. I., Gourdon E., Lamarque C.-H., “Towards the design of an optimal energetic sink in a strongly inhomogeneous two-degree-of-freedom system”, J. Appl. Mech., 74:6 (2007), 1078–1086 | DOI | MR
[5] Manevitch L. I., Kovaleva M. A., Manevitch E. L., “Limiting phase trajectories and resonance energy transfer in a system of two coupled oscillators”, Math. Probl. Eng., 2010 (2010), 760479, 24 pp. | DOI | MR | Zbl
[6] Manevitch L. I., Kovaleva A. S., Shepelev D. S., “Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near $1:1$ resonance”, Phys. D, 240:1 (2011), 1–12 | DOI | MR | Zbl
[7] Manevitch L. I., Vakakis A. F., “Nonlinear oscillatory acoustic vacuum”, SIAM J. Appl. Math., 74:6 (2014), 1742–1762 | DOI | MR | Zbl
[8] Vakakis A. F., Gendelman O. V., Bergman L. A., McFarland D. M., Kerschen G., Lee Y. S., Nonlinear targeted energy transfer in mechanical and structural systems, Solid Mech. Appl., 156, Springer, Dordrecht, 2009, 1032 pp.
[9] Silina K. G., Kikot I. P., Manevitch L. I., “Energy exchange and localization in the planar motion of a weightless beam carrying two discrete masses”, Regul. Chaotic Dyn., 20:2 (2015), 109–122 | DOI | MR | Zbl
[10] Starosvetsky Y., Ben-Meir Y., “Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum”, Phys. Rev. E., 87:6 (2013), 062919, 18 pp. | DOI
[11] Kikot I.P., Manevich L. I., “Svyazannye ostsillyatory na uprugoi podlozhke v usloviyakh akusticheskogo vakuuma”, Nelineinaya dinamika, 10:3 (2014), 245–263
[12] Kovaleva M. A., Manevich L. I., Pilipchuk V. N., “O novom tipe sinkhronizatsii generatorov s zhestkim vozbuzhdeniem”, ZhETF, 144:2(8) (2013), 428–437