Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 459-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a heavy rigid body with a point making the vertical high–frequency harmonic oscillations of small amplitude. The problem is considered in the framework of an approximate autonomous canonical system of differential equations of motion. The special motions are studied, which are permanent rotations of the body around the vertical principal axis of inertia containing its center of mass. Necessary and in some cases sufficient stability conditions for the corresponding equilibrium positions of the reduced two-degree-of-freedom system are found. The comparison of the results obtained with the corresponding results for a body with a fixed point is fulfilled. Nonlinear stability analysis is carried out for two special cases of mass geometry of the body.
Keywords: rigid body, stability, high-frequency vibrations.
Mots-clés : permanent rotations
@article{ND_2015_11_3_a1,
     author = {E. A. Vishenkova},
     title = {Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical},
     journal = {Russian journal of nonlinear dynamics},
     pages = {459--474},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_3_a1/}
}
TY  - JOUR
AU  - E. A. Vishenkova
TI  - Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 459
EP  - 474
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_3_a1/
LA  - ru
ID  - ND_2015_11_3_a1
ER  - 
%0 Journal Article
%A E. A. Vishenkova
%T Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical
%J Russian journal of nonlinear dynamics
%D 2015
%P 459-474
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_3_a1/
%G ru
%F ND_2015_11_3_a1
E. A. Vishenkova. Stability of special motions (permanent rotations) of a heavy rigid body with a suspension point vibrating along the vertical. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 3, pp. 459-474. http://geodesic.mathdoc.fr/item/ND_2015_11_3_a1/

[1] Staude O., “Über permanente Rotatiosaxen bei der Bewegung eines schweren Körpers um einen festen Punkt”, J. Reine Angew. Math., 113:4 (1894), 318–334 | MR

[2] Mlodzeevskii B. K., “O permanentnykh osyakh v dvizhenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki”, Trudy otdeleniya fiz. nauk Obschestva lyubitelei estestvoznaniya, 7:1 (1894), 46–48

[3] Kholostova O. V., Issledovanie ustoichivosti permanentnykh vraschenii Shtaude, Regulyarnaya i khaoticheskaya dinamika, Moskva – Izhevsk, 2008, 128 pp.

[4] Grammel R., Giroskop, ego teoriya i primeneniya, V 2-kh tt., IL, Moskva, 1952, 351, 318 pp.

[5] Rumyantsev V. V., “Ustoichivost permanentnykh vraschenii tyazhelogo tverdogo tel”, PMM, 20:1 (1956), 51–66 | Zbl

[6] Kovalev A. M., Savchenko A. Ya., “Ustoichivost ravnomernykh vraschenii tverdogo tela vokrug glavnoi osi”, PMM, 39:4 (1975), 650–660 | MR | Zbl

[7] Kovalev A. M., Savchenko A. Ya., “Ustoichivost statsionarnykh dvizhenii gamiltonovykh sistem pri nalichii rezonansa chetvertogo poryadka”, Mekhanika tverdogo tela, 1977, no. 9, 40–44 | MR

[8] Magnus K., Giroskop. Teoriya i primeneniya, Mir, Moskva, 1974, 526 pp.

[9] Rumyantsev V. V., “Ob ustoichivosti vrascheniya tyazhelogo tverdogo tela s odnoi nepodvizhnoi tochkoi v sluchae S. V. Kovalevskoi”, PMM, 18:4 (1954), 457–458 | Zbl

[10] Sergeev V. S., “Ob ustoichivosti permanentnykh vraschenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki”, PMM, 40:3 (1976), 408–416 | Zbl

[11] Stephenson A., “On a new type of dynamical stability”, Mem. Manchester Literary Philos. Soc., 52, pt. 2:8 (1908), 1–10

[12] Bardin B. S., Markeev A. P., “Ob ustoichivosti ravnovesiya mayatnika pri vertikalnykh kolebaniyakh tochki podvesa”, PMM, 59:6 (1995), 922–929 | MR | Zbl

[13] Bogolyubov N. N., “Teoriya vozmuschenii v nelineinoi mekhanike”, Sb. tr. In-ta stroit. mekh. AN USSR, 14, 1950, 9–34

[14] Vishenkova E. A., Kholostova O. V., “K dinamike dvoinogo mayatnika s gorizontalno vibriruyuschei tochkoi podvesa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 2, 114–129 | Zbl

[15] Kapitsa P. L., “Mayatnik s vibriruyuschim podvesom”, UFN, 44:5 (1951), 7–20

[16] Kapitsa P. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, ZhETF, 21:5 (1951), 588–597

[17] Markeev A. P., “O dinamike sfericheskogo mayatnika s vibriruyuschim podvesom”, PMM, 63:2 (1999), 213–219 | MR | Zbl

[18] Strizhak T. G., Metody issledovaniya dinamicheskikh sistem tipa «mayatnik», Nauka, Alma-Ata, 1981, 253 pp. | MR

[19] Kholostova O. V., “Ob ustoichivosti periodicheskikh dvizhenii mayatnika s gorizontalno vibriruyuschei tochkoi podvesa”, MTT, 1997, no. 4, 35–39 | MR

[20] Kholostova O. V., “O dvizheniyakh mayatnika s vibriruyuschei tochkoi podvesa”, Sb. nauch.-metod. st., Teoreticheskaya mekhanika, 24, MGU, Moskva, 2003, 157–167

[21] Kholostova O. V., “O dvizheniyakh dvoinogo mayatnika s vibriruyuschei tochkoi podvesa”, MTT, 2009, no. 2, 25–40

[22] Kholostova O. V., Dinamika volchka Lagranzha s nepodvizhnoi i vibriruyuschei tochkoi podvesa, MAI, Moskva, 2000, 84 pp.

[23] Yudovich V. I., “Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami”, Uspekhi mekhaniki, 4:3 (2006), 26–158

[24] Markeev A. P., “K teorii dvizheniya tverdogo tela s vibriruyuschim podvesom”, Dokl. RAN, 427:6 (2009), 771–775 | MR | Zbl

[25] Markeev A. P., “Ob uravneniyakh priblizhennoi teorii dvizheniya tverdogo tela s vibriruyuschei tochkoi podvesa”, PMM, 75:2 (2011), 193–203 | MR

[26] Kholostova O. V., “Ob ustoichivosti ravnovesii tverdogo tela s vibriruyuschei tochkoi podvesa”, Vestn. RUDN. Matem. Informatika. Fizika, 2011, no. 2, 111–122

[27] Markeev A. P., “O dvizhenii tyazhelogo dinamicheski simmetrichnogo tverdogo tela s vibriruyuschei tochkoi podvesa”, MTT, 2012, no. 4, 3–10 | MR

[28] Kholostova O. V., “Ob ustoichivosti chastnykh dvizhenii tyazhelogo tverdogo tela, obuslovlennykh bystrymi vertikalnymi vibratsiyami odnoi iz ego tochek”, Nelineinaya dinamika, 11:1 (2015), 99–116 | Zbl

[29] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2009, 416 pp.

[30] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, Moskva, 1978, 312 pp.

[31] Glimm J., “Formal stability of Hamiltonian systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl