The Hamilton\,--\,Jacobi method for non-Hamiltonian systems
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 279-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hydrodynamic substitution applied earlier only in the theory of plasma represents the decomposition of a special type of the distribution function in phase space which is marking out obviously dependence of a momentum variable on a configuration variable and time. For the system of the autonomous ordinary differential equations (ODE) given to a Hamilton form, evolution of this dynamic system is described by the classical Liouville equation for the distribution function defined on the cotangent bundle of configuration manifold. Liouville’s equation is given to the reduced Euler’s system representing pair of uncoupled hydrodynamic equations (continuity and momenta transfer). The equation for momenta by simple transformations can bebrought to the classicalequation of Hamilton – Jacobi foreikonal function. For the general systemautonomous ODE it is possibleto enter the decomposition of configuration variables into new configuration and «momenta» variables. In constructed thus phase (generally speaking, asymmetrical) space it is possible to consider the generalized Liouville’s equation, to lead it again to the pair of the hydrodynamic equations. The equation of transfer of «momenta» is an analog of the Hamilton – Jacobi equation for the general non-Hamilton case.
Mots-clés : hydrodynamical substitution, Liouville equation
Keywords: Hamilton – Jacobi method, non-Hamiltonian system.
@article{ND_2015_11_2_a5,
     author = {V. V. Vedenyapin and N. N. Fimin},
     title = {The {Hamilton\,--\,Jacobi} method for {non-Hamiltonian} systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a5/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - N. N. Fimin
TI  - The Hamilton\,--\,Jacobi method for non-Hamiltonian systems
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 279
EP  - 286
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a5/
LA  - ru
ID  - ND_2015_11_2_a5
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A N. N. Fimin
%T The Hamilton\,--\,Jacobi method for non-Hamiltonian systems
%J Russian journal of nonlinear dynamics
%D 2015
%P 279-286
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a5/
%G ru
%F ND_2015_11_2_a5
V. V. Vedenyapin; N. N. Fimin. The Hamilton\,--\,Jacobi method for non-Hamiltonian systems. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 279-286. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a5/

[1] Vlasov A. A., Statisticheskie funktsii raspredeleniya, Nauka, Moskva, 1966, 356 pp.

[2] Bom D., Obschaya teoriya kollektivnykh peremennykh, Mir, Moskva, 1964, 152 pp.

[3] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, Moskva, 2001, 112 pp.

[4] Kozlov V. V., “Gidrodinamika gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1983, no. 6, 10–22

[5] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 429 pp.

[6] Kozlov V. V., Obschaya teoriya vikhrei, UdGU, Izhevsk, 1998, 238 pp.

[7] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, GITTL, Moskva – Leningrad, 1950, 677 pp.

[8] Vedenyapin V. V., Fimin N. N., “Uravnenie Liuvillya, gidrodinamicheskaya podstanovka i uravnenie Gamiltona – Yakobi”, Dokl. RAN, 446:2 (2012), 142–144

[9] Vedenyapin V. V., Negmatov M. A., “O topologii gidrodinamicheskikh i vikhrevykh sledstvii uravneniya Vlasova i metod Gamiltona – Yakobi”, Dokl. RAN, 449:5 (2013), 521–526

[10] Lanczos C., The variational principles of mechanics, Univ. Toronto Press, Toronto, 1952, 308 pp.

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika: V 10 tt.: T. 1: Mekhanika, 4-e izd., ispr., Nauka, Moskva, 1988, 216 pp.

[12] Vedenyapin V. V., Fimin N. N., “Metod Gamiltona – Yakobi v negamiltonovoi situatsii i gidrodinamicheskaya podstanovka”, Dokl. RAN, 461:2 (2015), 136–139