The dynamics of systems with servoconstraints. I
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 353-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the dynamics of systems with Béghin’s servoconstraints wheretheconstraints are realized by means of controlled forces. Classical nonholonomic systems are an important particular case. Special attention is given to the study of motion on Lie groups with left-invariant kinetic energy and left-invariant constraints. The presence of symmetries allows one to reduce the dynamic equations to a closed system of differential equations with quadratic right-hand sides on a Lie algebra. Examples are given which include the rotation of a rigid body with a left-invariant servoconstraint — the projection of the angular velocity onto some direction fixed in the body is equal to zero (a generalization of the nonholonomic Suslov problem) — and the motion of the Chaplygin sleigh with servoconstraints of a certain type. The dynamics of systems with Béghin’s servoconstraints is richer and more varied than the more usual dynamics of nonholonomic systems.
Keywords: servoconstraints, symmetries, Lie groups, left-invariant constraints, systems with quadratic right-hand sides.
@article{ND_2015_11_2_a10,
     author = {V. V. Kozlov},
     title = {The dynamics of systems with servoconstraints. {I}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {353--376},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - The dynamics of systems with servoconstraints. I
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 353
EP  - 376
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/
LA  - ru
ID  - ND_2015_11_2_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T The dynamics of systems with servoconstraints. I
%J Russian journal of nonlinear dynamics
%D 2015
%P 353-376
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/
%G ru
%F ND_2015_11_2_a10
V. V. Kozlov. The dynamics of systems with servoconstraints. I. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 353-376. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/

[1] Béghin M. H., Étude théorique des compas gyrostatiques Anschütz et Sperry, Impr. nationale, Paris, 1921, 132 pp.; Беген А., Теория гироскопических компасов Аншютца и Сперри и общая теория систем с сервосвязями, Наука, Москва, 1967, 172 с.

[2] Appel P., Traité de Mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 584 pp.; Аппель П., Теоретическая механика: Т. 2: Динамика системы. Аналитическая механика, Физматгиз, Москва, 1960, 487 с.

[3] Kozlov V. V., “Printsipy dinamiki i servosvyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1989, no. 5, 59–66

[4] Poincaré H., “Sur une forme nouvelle des équations de la Mécanique”, C. R. Acad. Sci., 132 (1901), 369–371

[5] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp.; Козлов В. В., Общая теория вихрей, НИЦ «Регулярная и хаотическая динамика», Ижевский институт компьютерных исследований, Москва – Ижевск, 2013, 324 с.

[6] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, Moskva – Izhevsk, 2009, 312 pp.

[7] Kozlov V. V., “Exchange of stabilities in the Euler – Poincaré – Suslov systems under the change of the direction of motion”, Nonlinear Dynamics Mobile Robotics, 2:2 (2014), 199–211

[8] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 161–176

[9] Andronov A. A., Leontovich E. A., Gordon I. M., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1967, 487 pp.

[10] Kozlov V. V., “Ob invariantnykh merakh uravnenii Eilera – Puankare na algebrakh Li”, Funkts. analiz i ego pril., 22:1 (1988), 69–70

[11] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 520 pp.

[12] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225

[13] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp.; Коддингтон Э. А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, ИИЛ, Москва, 1958, 475 с.

[14] Kirgetov V. I., “O dvizhenii upravlyaemykh mekhanicheskikh sistem s uslovnymi svyazyami (servosvyazyami)”, PMM, 31:3 (1967), 433–446

[15] Golubev Yu. F., “Mekhanicheskie sistemy s servosvyazyami”, PMM, 65:2 (2001), 211–224

[16] Rumyantsev V. V., “O dvizhenii upravlyaemykh mekhanicheskikh sistem”, PMM, 40:5 (1976), 771–781

[17] Grdina Ya. I., Zametki po dinamike zhivykh organizmov, Ekaterinoslavsk. gorn. in-t, Ekaterinoslav, 1916

[18] Blajer W., Seifried R., Kołodziejczyk K., “Servo-Constraint Realization for Underactuated Mechanical Systems”, Arch. Appl. Mech., 2015 (DOI 10.1007/s00419-014-0959-2)

[19] Utkin V. I., Skolzyaschie rezhimy i ikh primeneniya v sistemakh s peremennoi strukturoi, Nauka, Moskva, 1974, 272 pp.

[20] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2009, 416 pp.

[21] Kharlamova-Zabelina E. I., “Bystroe vraschenie tverdogo tela vokrug nepodvizhnoi tochki pri nalichii negolonomnoi svyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1957, no. 6, 25–34