Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_2_a10, author = {V. V. Kozlov}, title = {The dynamics of systems with servoconstraints. {I}}, journal = {Russian journal of nonlinear dynamics}, pages = {353--376}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/} }
V. V. Kozlov. The dynamics of systems with servoconstraints. I. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 353-376. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a10/
[1] Béghin M. H., Étude théorique des compas gyrostatiques Anschütz et Sperry, Impr. nationale, Paris, 1921, 132 pp.; Беген А., Теория гироскопических компасов Аншютца и Сперри и общая теория систем с сервосвязями, Наука, Москва, 1967, 172 с.
[2] Appel P., Traité de Mécanique rationnelle: Vol. 2. Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 584 pp.; Аппель П., Теоретическая механика: Т. 2: Динамика системы. Аналитическая механика, Физматгиз, Москва, 1960, 487 с.
[3] Kozlov V. V., “Printsipy dinamiki i servosvyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1989, no. 5, 59–66
[4] Poincaré H., “Sur une forme nouvelle des équations de la Mécanique”, C. R. Acad. Sci., 132 (1901), 369–371
[5] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp.; Козлов В. В., Общая теория вихрей, НИЦ «Регулярная и хаотическая динамика», Ижевский институт компьютерных исследований, Москва – Ижевск, 2013, 324 с.
[6] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, Moskva – Izhevsk, 2009, 312 pp.
[7] Kozlov V. V., “Exchange of stabilities in the Euler – Poincaré – Suslov systems under the change of the direction of motion”, Nonlinear Dynamics Mobile Robotics, 2:2 (2014), 199–211
[8] Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 161–176
[9] Andronov A. A., Leontovich E. A., Gordon I. M., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1967, 487 pp.
[10] Kozlov V. V., “Ob invariantnykh merakh uravnenii Eilera – Puankare na algebrakh Li”, Funkts. analiz i ego pril., 22:1 (1988), 69–70
[11] Neimark Yu. I., Fufaev N. A., Dinamika negolonomnykh sistem, Nauka, Moskva, 1967, 520 pp.
[12] Borisov A. V., Mamaev I. S., “Dinamika sanei Chaplygina”, PMM, 73:2 (2009), 219–225
[13] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp.; Коддингтон Э. А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, ИИЛ, Москва, 1958, 475 с.
[14] Kirgetov V. I., “O dvizhenii upravlyaemykh mekhanicheskikh sistem s uslovnymi svyazyami (servosvyazyami)”, PMM, 31:3 (1967), 433–446
[15] Golubev Yu. F., “Mekhanicheskie sistemy s servosvyazyami”, PMM, 65:2 (2001), 211–224
[16] Rumyantsev V. V., “O dvizhenii upravlyaemykh mekhanicheskikh sistem”, PMM, 40:5 (1976), 771–781
[17] Grdina Ya. I., Zametki po dinamike zhivykh organizmov, Ekaterinoslavsk. gorn. in-t, Ekaterinoslav, 1916
[18] Blajer W., Seifried R., Kołodziejczyk K., “Servo-Constraint Realization for Underactuated Mechanical Systems”, Arch. Appl. Mech., 2015 (DOI 10.1007/s00419-014-0959-2)
[19] Utkin V. I., Skolzyaschie rezhimy i ikh primeneniya v sistemakh s peremennoi strukturoi, Nauka, Moskva, 1974, 272 pp.
[20] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2009, 416 pp.
[21] Kharlamova-Zabelina E. I., “Bystroe vraschenie tverdogo tela vokrug nepodvizhnoi tochki pri nalichii negolonomnoi svyazi”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1957, no. 6, 25–34