Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_2_a1, author = {V. E. Nazarov and S. B. Kiyashko and A. V. Radostin}, title = {Self-similar waves in media with bimodular elastic nonlinearity and relaxation}, journal = {Russian journal of nonlinear dynamics}, pages = {209--218}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_2_a1/} }
TY - JOUR AU - V. E. Nazarov AU - S. B. Kiyashko AU - A. V. Radostin TI - Self-similar waves in media with bimodular elastic nonlinearity and relaxation JO - Russian journal of nonlinear dynamics PY - 2015 SP - 209 EP - 218 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_2_a1/ LA - ru ID - ND_2015_11_2_a1 ER -
%0 Journal Article %A V. E. Nazarov %A S. B. Kiyashko %A A. V. Radostin %T Self-similar waves in media with bimodular elastic nonlinearity and relaxation %J Russian journal of nonlinear dynamics %D 2015 %P 209-218 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2015_11_2_a1/ %G ru %F ND_2015_11_2_a1
V. E. Nazarov; S. B. Kiyashko; A. V. Radostin. Self-similar waves in media with bimodular elastic nonlinearity and relaxation. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/ND_2015_11_2_a1/
[1] Rudenko O. V., Soluyan S. I., Teoreticheskie osnovy nelineinoi akustiki, Nauka, Moskva, 1975, 288 pp.
[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika: V 10 tt. T. 6: Gidrodinamika, 5-e izd., Fizmatlit, Moskva, 2006, 736 pp.
[3] Naugolnykh K. A., Ostrovskii L. A., Nelineinye volnovye protsessy v akustike, Nauka, Moskva, 1990, 237 pp.
[4] Pischalnikov Yu. A., Sapozhnikov O. A., Khokhlova V. A., “Modifikatsiya spektralnogo podkhoda k opisaniyu nelineinykh akusticheskikh voln s razryvami”, Akust. zhurn., 42:3 (1996), 412–417
[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika: V 10 tt.: T. 7: Teoriya uprugosti, 5-e izd., Fizmatlit, Moskva, 2003, 264 pp.
[6] Ambartsumyan S. A., Raznomodulnaya teoriya uprugosti, Nauka, Moskva, 1982, 359 pp.
[7] Nikolaev A. V., “Seismicheskie svoistva rykhlykh sred”, Izv. AN SSSR Ser. Fizika Zemli, 1979, no. 1, 72–77
[8] Aleshin A. S., Kuznetsov V. V., “O parametrakh nelineinosti gruntov”, Nelineinaya seismologiya: Mezhdunar. simp.: Tez. dokl., Nauka, Moskva, 1986, 4 pp.
[9] Bagmet A. L., Nazarov V. E., Nikolaev A. V., “Staticheskaya deformatsiya zemnoi poverkhnosti vblizi garmonicheskogo istochnika seismicheskikh kolebanii”, Izv. AN SSSR. Ser. Fizika Zemli, 1996, no. 7, 72–74
[10] Maslov V. P., Mosolov P. P., “Obschaya teoriya reshenii uravneniya dvizheniya raznomodulnoi uprugoi sredy”, PMTF, 49:3 (1985), 419–437
[11] Nazarov V. E., Ostrovskii L. A., “Uprugie volny v sredakh s silnoi akusticheskoi nelineinostyu”, Akust. zhurn., 36:1 (1990), 106–110
[12] Gavrilov S. N., Herman G. C., “Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading”, J. Sound Vibration, 331 (2012), 4464–4480
[13] Radostin A. V., Nazarov V. E., Kiyashko S. B., “Propagation of nonlinear acoustic waves in bimodular media with linear dissipation”, Wave Motion, 50:2 (2013), 191–196
[14] Nazarov V. E., Radostin A. V., Nelineinye volnovye protsessy v uprugikh mikroneodnorodnykh sredakh, IPF RAN, Nizhnii Novgorod, 2007, 254 pp.
[15] Ryskin N. M., Trubetskov D. I., Nelineinye volny, Nauka, Moskva, 2000, 272 pp.