Separation of variables for some generalization of the Chaplygin system on~a~sphere
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 179-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how to to get variables of separation for the Chaplygin system on the sphere with velocity dependent potential using relations of this system with other integrable system separable in sphero-conical coordinates on the sphere.
Keywords: integrable systems, separation of variables, velocity dependent potentials.
@article{ND_2015_11_1_a9,
     author = {Andrey V. Tsiganov},
     title = {Separation of variables for some generalization of the {Chaplygin} system on~a~sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_1_a9/}
}
TY  - JOUR
AU  - Andrey V. Tsiganov
TI  - Separation of variables for some generalization of the Chaplygin system on~a~sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 179
EP  - 185
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_1_a9/
LA  - ru
ID  - ND_2015_11_1_a9
ER  - 
%0 Journal Article
%A Andrey V. Tsiganov
%T Separation of variables for some generalization of the Chaplygin system on~a~sphere
%J Russian journal of nonlinear dynamics
%D 2015
%P 179-185
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_1_a9/
%G ru
%F ND_2015_11_1_a9
Andrey V. Tsiganov. Separation of variables for some generalization of the Chaplygin system on~a~sphere. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 179-185. http://geodesic.mathdoc.fr/item/ND_2015_11_1_a9/

[1] Sokolov V. V., “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37 | DOI

[2] Sokolov V. V., “Generalized Kowalevski top: New integrable cases on $e(3)$ and $so(4)$”, The Kowalevski property, Proceedings of the Kowalevski Workshop on Mathematical Methods of Regular Dynamics (MMRD), dedicated to the 150th anniversary of Sophie Kowalevski's birth (University of Leeds, Leeds, April 12–15, 2000), CRM Proc. Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, R.I., 2002, 307–313

[3] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp.

[4] Sokolov V. V., Tsyganov A. V., “Kommutativnye puassonovy podalgebry dlya skobok Sklyanina i deformatsii izvestnykh integriruemykh modelei”, TMF, 133:3 (2002), 485–500 | DOI

[5] Sokolov V. V., Tsyganov A. V., “Pary Laksa dlya deformirovannykh volchkov Kovalevskoi i Goryacheva–Chaplygina”, TMF, 131:1 (2002), 118–125 | DOI

[6] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Tr. otd. fiz. nauk, 11:2 (1903), 7–10

[7] Tsiganov A. V., “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI

[8] Tsiganov A. V., “The Stäckel systems and algebraic curves”, J. Math. Phys., 40:1 (1999), 279–298 | DOI

[9] Tsyganov A. V., “Tsepochki Tody v metode Yakobi”, TMF, 139:2 (2004), 225–244 | DOI

[10] Valent G., “On a class of integrable systems with a quartic first integral”, Regul. Chaotic Dyn., 18:4 (2013), 394–424 | DOI