On the investigation of stability of equilibrium in Sitnikov problem in~nonlinear formulation
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 117-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

With regard to nonlinear terms in the equations of motion, the stability of the trivial equilibrium in Sitnikov problem is investigated. For Hamilton's equations of the problem, the mapping of phase space into itself in the time $t=2\pi $ was constructed up to terms of third order. With the help of point mapping method, the stability of equilibrium is investigated for eccentricity from the interval $[0,1)$. It is shown that Lyapunov stability takes place for $e\in [0,1)$, if we exclude the discrete sequence of values $\{ e_{j} \} $ for which the trace of the monodromy matrix is equal to $\pm 2$. The first and second values of the eccentricity of the specified sequence are investigated. The equilibrium is stable if $e=e_{1} $. Eccentricity value $e=e_{2} $ corresponds to degeneracy stability theorems, therefore the stability analysis requires the consideration of the terms of order higher than the third. The remaining values of eccentricity from discrete sequence have not been studied.
Keywords: Sitnikov problem, stability, point mappings.
@article{ND_2015_11_1_a5,
     author = {Vyacheslav O. Kalas and Pavel S. Krasilnikov},
     title = {On the investigation of stability of equilibrium in {Sitnikov} problem in~nonlinear formulation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_1_a5/}
}
TY  - JOUR
AU  - Vyacheslav O. Kalas
AU  - Pavel S. Krasilnikov
TI  - On the investigation of stability of equilibrium in Sitnikov problem in~nonlinear formulation
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 117
EP  - 126
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_1_a5/
LA  - ru
ID  - ND_2015_11_1_a5
ER  - 
%0 Journal Article
%A Vyacheslav O. Kalas
%A Pavel S. Krasilnikov
%T On the investigation of stability of equilibrium in Sitnikov problem in~nonlinear formulation
%J Russian journal of nonlinear dynamics
%D 2015
%P 117-126
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_1_a5/
%G ru
%F ND_2015_11_1_a5
Vyacheslav O. Kalas; Pavel S. Krasilnikov. On the investigation of stability of equilibrium in Sitnikov problem in~nonlinear formulation. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 117-126. http://geodesic.mathdoc.fr/item/ND_2015_11_1_a5/

[1] Sitnikov K. A., “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, Dokl. AN SSSR, 133:2 (1960), 303–306

[2] Kalas V. O., Krasilnikov P. S., “Ob ustoichivosti ravnovesiya v zadache Sitnikova”, Kosmicheskie issledovaniya, 49:6 (2011), 551–554

[3] Zhuravlev S. G., Perepelkina Yu. V., “Ob ustoichivosti v strogom nelineinom smysle trivialnogo polozheniya otnositelnogo ravnovesiya v klassicheskom i obobschennykh variantakh zadachi Sitnikova”, PMM, 77:2 (2013), 239–250

[4] Markeev A. P., “Ob odnom sposobe issledovaniya ustoichivosti polozhenii ravnovesiya gamiltonovykh sistem”, MTT, 2004, no. 6, 3–12

[5] Markeev A. P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, MTT, 1996, no. 2, 37–54

[6] Markeev A. P., “Ob ustoichivosti nelineinykh kolebanii svyazannykh mayatnikov”, MTT, 2013, no. 4, 20–30

[7] Tkhai V. N., “Periodicheskie dvizheniya obratimoi mekhanicheskoi sistemy vtorogo poryadka: Prilozhenie k zadache Sitnikova”, PMM, 70:5 (2006), 813–834

[8] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, LGU, L., 1991, 143 pp.