Discrete breathers and multibreathers in the Peyrard--Bishop DNA model
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete breathers and multibreathers are investigated within the Peyrard–Bishop model. Region of existence of discrete breathers and multibreathers is defined. One, two and three site discrete breathers solutions are obtained. Their properties and stability are investigated.
Keywords: discrete breathers, multibreathers, Peyrard–Bishop DNA model.
@article{ND_2015_11_1_a2,
     author = {Marat I. Fakhretdinov and Farit K. Zakirianov and Evgenii G. Ekomasov},
     title = {Discrete breathers and multibreathers in the {Peyrard--Bishop} {DNA} model},
     journal = {Russian journal of nonlinear dynamics},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_1_a2/}
}
TY  - JOUR
AU  - Marat I. Fakhretdinov
AU  - Farit K. Zakirianov
AU  - Evgenii G. Ekomasov
TI  - Discrete breathers and multibreathers in the Peyrard--Bishop DNA model
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 77
EP  - 87
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_1_a2/
LA  - ru
ID  - ND_2015_11_1_a2
ER  - 
%0 Journal Article
%A Marat I. Fakhretdinov
%A Farit K. Zakirianov
%A Evgenii G. Ekomasov
%T Discrete breathers and multibreathers in the Peyrard--Bishop DNA model
%J Russian journal of nonlinear dynamics
%D 2015
%P 77-87
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_1_a2/
%G ru
%F ND_2015_11_1_a2
Marat I. Fakhretdinov; Farit K. Zakirianov; Evgenii G. Ekomasov. Discrete breathers and multibreathers in the Peyrard--Bishop DNA model. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 77-87. http://geodesic.mathdoc.fr/item/ND_2015_11_1_a2/

[1] Sievers A. J., Takeno S., “Intrinsic localized modes in anharmonic crystals”, Phys. Rev. Lett., 61:8 (1988), 970–973 | DOI

[2] Page J. B., “Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems”, Phys. Rev. B, 41:11 (1990), 7835–7838 | DOI

[3] Campbell D. K., Peyrard M., “Chaos and order in non-intagrable model field theories”, Chaos: Soviet-American perspectives on nonlinear science, ed. D. K. Campbell, AIP, New York, 1990, 305–334

[4] Flach S., Willis C. R., “Localized excitations in a discrete Klein–Gordon system”, Phys. Lett. A, 181:3 (1993), 232–238 | DOI

[5] Flach S., Willis C. R., Olbrich E., “Integrability and localized excitations in nonlinear discrete systems”, Phys. Rev. E, 49:1 (1994), 836–850 | DOI

[6] Flach S., “Conditions on the existence of localized excitations in nonlinear discrete systems”, Phys. Rev. E, 50:4 (1994), 3134–3142 | DOI

[7] Hennig D., Rasmussen K. Ø., Tsironis G. P., Gabriel H., “Breatherlike impurity modes in discrete nonlinear lattices”, Phys. Rev. E, 52:5 (1995), R4628–R4631 | DOI

[8] Cai D., Bishop A. R., Grønbech-Jensen N., “Spatially localized, temporally quasiperiodic, discrete nonlinear excitations”, Phys. Rev. E, 52:6 (1995), R5784–R5787 | DOI

[9] Popov S. P., “O formakh dvumernykh solitonnykh vozmuschenii v prosteishikh reshetkakh”, Zh. vychisl. matem. i matem. fiz., 49:2 (2009), 323–331

[10] Flach S., Gorbach A., “Computational studies of discrete breathers — from basics to competing length scales”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16:6 (2006), 1645–1669 | DOI

[11] Shimada T., Shirasaki D., Kitamura T., “Stone–Wales transformations triggered by intrinsic localized modes in carbon nanotubes”, Phys. Rev. B, 81:3 (2010), 035401, 4 pp. | DOI

[12] Baimova J. A., Dmitriev S. V., Zhou K., “Discrete breather clusters in strained graphene”, Europhys. Lett., 100:3 (2012), 36005, 6 pp. | DOI

[13] Khadeeva L. Z., Dmitriev S. V., Kivshar Yu. S., “Diskretnye brizery v deformirovannom grafene”, Pisma v ZhETF, 94:7 (2011), 580–584

[14] Korznikova E. A., Baimova J. A., Dmitriev S. V., “Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons”, Europhys. Lett., 102:6 (2013), 60004, 5 pp. | DOI

[15] Korznikova E. A., Savin A. V., Baimova Yu. A., Dmitriev S. V., Mulyukov R. R., “Diskretnyi brizer na krayu lista grafena orientatsii «kreslo»”, Pisma v ZhETF, 96:4 (2012), 238–242

[16] Liu B., Baimova Ju. A., Dmitriev S. V., Wang X., Zhu H., Zhou K., “Discrete breathers in hydrogenated graphene”, J. Phys. D, 46:30 (2013), 305302, 9 pp. | DOI

[17] Chechin G. M., Dmitriev S. V., Lobzenko I. P., Ryabov D. S., “Properties of discrete breathers in graphane from ab initio simulations”, Phys. Rev. B, 90:4 (2014), 045432, 6 pp. | DOI

[18] MacKay R. S., Aubry S., “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity, 7:6 (1994), 1623–1643 | DOI

[19] Aubry S., “Breathers in nonlinear lattices: Existence, linear stability and quantization”, Phys. D, 103:1–4 (1997), 201–250 | DOI

[20] Peyrard M., Bishop A. R., “Statistical mechanics of a nonlinear model for DNA denaturation”, Phys. Rev. Lett., 62:23 (1989), 2755–2758 | DOI

[21] Shigaev A. S., Ponomarev O. A., Lakhno V. D., “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Matem. biologiya i bioinform., 8:2 (2013), 553–664 | DOI

[22] Fakhretdinov M. I., Zakiryanov F. K., “Diskretnye brizery v modeli DNK Peirara–Bishopa”, ZhTF, 83:7 (2013), 1–5

[23] Dauxois T., “Dynamics of breather modes in a nonlinear «helicoidal» model of DNA”, Phys. Lett. A, 159:8–9 (1991), 390–395 | DOI

[24] Zdravković S., Satarić M. V., “Stacking interaction in DNA molecule”, J. Comput. Theor. Nanosci., 7:10 (2010), 2031–2035 | DOI