The dynamic of a spherical robot with an internal omniwheel platform
Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 187-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamic model for a spherical robot with an internal omniwheel platform is presented. Equations of motion and first integrals according to the non-holonomic model are given. We consider particular solutions and their stability. The algorithm of control of spherical robot for movement along a given trajectory are presented.
Keywords: spherical robot, dynamical model, non-holonomic constraint, omniwheel, stability.
@article{ND_2015_11_1_a10,
     author = {Yury L. Karavaev and Alexander A. Kilin},
     title = {The dynamic of a spherical robot with an internal omniwheel platform},
     journal = {Russian journal of nonlinear dynamics},
     pages = {187--204},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2015_11_1_a10/}
}
TY  - JOUR
AU  - Yury L. Karavaev
AU  - Alexander A. Kilin
TI  - The dynamic of a spherical robot with an internal omniwheel platform
JO  - Russian journal of nonlinear dynamics
PY  - 2015
SP  - 187
EP  - 204
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2015_11_1_a10/
LA  - ru
ID  - ND_2015_11_1_a10
ER  - 
%0 Journal Article
%A Yury L. Karavaev
%A Alexander A. Kilin
%T The dynamic of a spherical robot with an internal omniwheel platform
%J Russian journal of nonlinear dynamics
%D 2015
%P 187-204
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2015_11_1_a10/
%G ru
%F ND_2015_11_1_a10
Yury L. Karavaev; Alexander A. Kilin. The dynamic of a spherical robot with an internal omniwheel platform. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 187-204. http://geodesic.mathdoc.fr/item/ND_2015_11_1_a10/

[1] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI

[2] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI

[3] Rutstam N., “High frequency behavior of a rolling ball and simplification of the separation equation”, Regul. Chaotic Dyn., 18:3 (2013), 226–236 | DOI

[4] Borisov A. V., Mamaev I. S., “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI

[5] Borisov A. V., Mamaev I. S., “The dynamics of the Chaplygin ball with a fluid-filled cavity”, Regul. Chaotic Dyn., 18:5 (2013), 490–496 | DOI

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI

[7] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI

[8] Borisov A. V., Mamaev I. S., Kilin A. A., “Stability of steady rotations in the nonholonomic Routh problem”, Regul. Chaotic Dyn., 13:4 (2008), 239–249 | DOI

[9] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 2012, no. 1, 3–23 | DOI

[10] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, Pa., 2006, 6 pp.

[11] Bolotin S. V., Popova T. V., “Ob uravneniyakh dvizheniya sistemy vnutri katyaschegosya shara”, Nelineinaya dinamika, 9:1 (2013), 51–58

[12] Ylikorpi T., Suomela J., “Ball-shaped robots”, Climbing and walking robots: Towards new applications, ed. H. Zhang, InTech, Vienna, 2007, 546

[13] A. V. Borisov, I. S. Mamaev, Yu. L. Karavaev (red.), Mobilnye roboty: robot-koleso i robot-shar, Institut kompyuternykh issledovanii, M.–Izhevsk, 2013, 532 pp.

[14] Borisov A. V., Kilin A. A., Mamaev I. S., “Telezhka s omnikolesami na ploskosti i sfere”, Nelineinaya dinamika, 7:4 (2011), 785–801

[15] Chen W.-H., Chen Ch.-P., Yu W.-Sh., Lin Ch.-H., Lin P.-Ch., “Design and implementation of an omnidirectional spherical robot Omnicron”, IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Kachsiung, Taiwan, 2012), 719–724

[16] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI

[17] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors, 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI

[18] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143 | DOI

[19] Morinaga A., Svinin M., Yamamoto M., “A motion planning strategy for a spherical rolling robot driven by two internal rotors”, IEEE Trans. on Robotics, 30:4 (2014), 993–1002 | DOI

[20] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a class of spherical rolling robots”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, 14–18 May, 2012), 3226–3231

[21] Kazakov A. O., “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI

[22] Ivanova T. B., Pivovarova E. N., “Dinamika i upravlenie sfericheskim robotom s osesimmetrichnym mayatnikovym privodom”, Nelineinaya dinamika, 9:3 (2013), 507–520

[23] Koshiyama A., Yamafuji K., “Design and control of an all-direction steering type mobile robot”, Int. J. Robot. Res., 12:5 (1993), 411–419 | DOI

[24] Balandin D. V., Komarov M. A., Osipov G. V., “Upravlenie dvizheniem sfericheskogo robota s mayatnikovym privodom”, Izv. RAN. Teoriya i sistemy upravleniya, 2013, no. 4, 150–163 | DOI

[25] Kayacan E., Bayraktaroglu Z. Y., Saeys W., “Modeling and control of a spherical rolling robot: A decoupled dynamics approach”, Robotica, 30:12 (2012), 671–680 | DOI

[26] Yoon J.-Ch., Ahn S.-S., Lee Y.-J., “Spherical robot with new type of two-pendulum driving mechanism”, Proc. of the 15th IEEE Internat. Conf. on Intelligent Engineering Systems (INES) (2011), 275–279

[27] Zhao B., Li M., Yu H., Hu H., Sun L., “Dynamics and motion control of a two pendulums driven spherical robot”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS) (2010), 147–153

[28] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Kachenie bez vercheniya shara po ploskosti: Otsutstvie invariantnoi mery v sisteme s polnym naborom integralov”, Nelineinaya dinamika, 8:3 (2012), 605–616

[29] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI

[30] Borisov A. V., Mamaev I. S., “Rolling of a non-homogeneous ball over a sphere without slipping and twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI

[31] Borisov A. V., Mamaev I. S., “Izomorfizm i gamiltonovo predstavlenie nekotorykh negolonomnykh sistem”, Sib. matem. zhurn., 48:1 (2007), 33–45

[32] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The self-propulsion of a body with moving internal masses in a viscous fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117 | DOI

[33] Takano H., “Spin reversal of a rattleback with viscous friction”, Regul. Chaotic Dyn., 19:1 (2014), 81–99 | DOI

[34] Mamaev I. S., Ivanova T. B., “The dynamics of a rigid body with a sharp edge in contact with an inclined surface in the presence of dry friction”, Regul. Chaotic Dyn., 19:1 (2014), 116–139 | DOI

[35] Ivanova T. B., Pivovarova E. N., “Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev «How to control the Chaplygin ball using rotors, 2»”, Regul. Chaotic Dyn., 19:1 (2014), 140–143 | DOI

[36] Burlakov D., Treschev D., “A rigid body on a surface with random roughness”, Regul. Chaotic Dyn., 18:3 (2014), 296–309 | DOI

[37] Borisov A. V., Erdakova N. N., Ivanova T. B., Mamaev I. S., “The dynamics of a body with an axisymmetric base sliding on a rough plane”, Regul. Chaotic Dyn., 19:6 (2014), 607–634 | DOI

[38] Hogan F. R., Forbes J. R., “Modeling of spherical robots rolling on generic surfaces”, Multibody Syst. Dyn., 2014, 19 pp.

[39] Forbes J. R., Barfoot T. D., Damaren Ch. J., “Dynamic modeling and stability analysis of a power-generating tumbleweed rover”, Multibody Syst. Dyn., 24:4 (2010), 413–439 | DOI

[40] Hogan F. R., Forbes J. R., Barfoot T. D., “Rolling stability of a power-generating tumbleweed rover”, J. of Spacecraft and Rockets, 51:6 (2014), 1895–1906 | DOI

[41] Yu T., Sun H., Jia Q., Zhang Y., Zhao W., “Stabilization and control of a spherical robot on an inclined plane”, Res. J. Appl. Sci. Eng. Technology, 5:6 (2013), 2289–2296

[42] Hartl A. E., Mazzoleni A. P., “Dynamic modeling of a wind-driven tumbleweed rover including atmospheric effects”, J. of Spacecraft and Rockets, 47:3 (2010), 493–502 | DOI

[43] Hartl A. E., Mazzoleni A. P., “Parametric study of spherical rovers crossing a valley”, J. Guid. Control Dynam., 31:3 (2008), 775–779 | DOI

[44] Lee J., Park W., “Design and path planning for a spherical rolling robot”, ASME Internat. Mechanical Engineering Congress and Exposition (San Diego, Calif., Nov. 15–21, 2013), v. 4A, Dynamics, Vibration and Control, IMECE2013-64994, 8 pp.

[45] Ahn S.-S., Lee Y.-J., “Novel spherical robot with hybrid pendulum driving mechanism”, Adv. Mech. Eng., 2014 (2014), 456727, 14 pp.

[46] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp.

[47] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[48] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI

[49] Borisov A. V., Kazakov A. O., Kuznetsov S. P., “Nelineinaya dinamika keltskogo kamnya: Negolonomnaya model”, UFN, 184:5 (2014), 493–500 | DOI

[50] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[51] Borisov A. V., Kilin A. A., Mamaev I. S., “Novye effekty v dinamike keltskikh kamnei”, Dokl. RAN, 408:2 (2006), 192–195

[52] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “Richness of chaotic dynamics in nonholonomic models of a celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI

[53] Borisov A. V., Kilin A. A., Mamaev I. S., “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI

[54] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI

[55] Kilin A. A., Karavaev Yu. L., “Kinematicheskaya model upravleniya sferorobotom s neuravnoveshennoi omnikolesnoi platformoi”, Nelineinaya dinamika, 10:4 (2014), 497–511

[56] Kilin A. A., Karavaev Yu. L., Klekovkin A. V., “Kinematicheskaya model upravleniya vysokomanevrennym mobilnym sferorobotom s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinamika, 10:1 (2014), 113–126

[57] Borisov A. V., Mamaev I. S., “Rolling of a non-homogeneous ball over a sphere without slipping and twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI

[58] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI

[59] Koiller J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI