Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2015_11_1_a0, author = {Sergey P. Kuznetsov}, title = {Motion of a falling card in a fluid: {Finite-dimensional} models, complex phenomena, and nonlinear dynamics}, journal = {Russian journal of nonlinear dynamics}, pages = {3--49}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2015_11_1_a0/} }
TY - JOUR AU - Sergey P. Kuznetsov TI - Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics JO - Russian journal of nonlinear dynamics PY - 2015 SP - 3 EP - 49 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2015_11_1_a0/ LA - ru ID - ND_2015_11_1_a0 ER -
%0 Journal Article %A Sergey P. Kuznetsov %T Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics %J Russian journal of nonlinear dynamics %D 2015 %P 3-49 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2015_11_1_a0/ %G ru %F ND_2015_11_1_a0
Sergey P. Kuznetsov. Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics. Russian journal of nonlinear dynamics, Tome 11 (2015) no. 1, pp. 3-49. http://geodesic.mathdoc.fr/item/ND_2015_11_1_a0/
[1] Maxwell J. K., “On a particular case of descent of a heavy body in a resisting medium”, Cambridge and Dublin Math. Journ., 9 (1854), 145–148
[2] Kirkhgof G. R., “O dvizhenii tela vrascheniya v zhidkosti”, Gustav Robert Kirkhgof. Izbrannye trudy, eds. E. I. Pogrebysskaya, L. S. Polak, Nauka, M., 1988, 280–300
[3] Zhukovskii N. E., “O parenii ptits”, Zhukovskii N. E. Sobranie sochinenii, V 7 tt., v. 4, Aerodinamika, eds. L. S. Leibenzon, S. A. Khristianovich i dr., Gostekhizdat, M.–L., 1949, 3–34
[4] Belmonte A., Moses E., “Flutter and tumble in fluids”, Physics World, 12:4 (1999), 21–25
[5] Finn D. L., “Falling paper and flying business cards”, SIAM News, 40:4 (2007), 3
[6] Ern P., Risso F., Fabre D., Magnaudet J., “Wake-induced oscillatory paths of bodies freely rising or falling in fluids”, Annu. Rev. Fluid Mech., 44 (2012), 97–121 | DOI
[7] Lamb G., Gidrodinamika, OGIZ, M.–L., 1947, 929 pp.
[8] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp.
[9] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Nauka, M., 1966, 448 pp.
[10] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika, v. 2, Fizmatlit, M., 1963, 728 pp.
[11] Birkgof G., Gidrodinamika: Metody, fakty, podobie, IL, M., 1963, 244 pp.
[12] Arzhanikov N. S., Sadekova G. S., Aerodinamika letatelnykh apparatov, Vysshaya shkola, M., 1983, 359 pp.
[13] Ya. G. Sinai, L. P. Shilnikov (red.), Strannye attraktory, Mir, M., 1981, 256 pp.
[14] Shuster G., Determinirovannyi khaos. Vvedenie, Mir, M., 1988, 253 pp.
[15] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.
[16] Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Chua L. O., “Multi-parameter criticality in Chua's circuit at period-doubling transition to chaos”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:1 (1996), 119–148 | DOI
[17] Borisov A. V., Jalnin A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI
[18] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them”, Meccanica, 15 (1980), 9–30 | DOI
[19] Kuznetsov Yu. A., Elements of applied bifurcation theory, Appl. Math. Sci., 112, 3rd ed., Springer, New York, 2004, 631 pp. | DOI
[20] Borisov A. V., Kozlov V. V., Mamaev I. S., “O padenii tyazhelogo tverdogo tela v idealnoi zhidkosti”, Tr. IMM UrO RAN, 12, no. 1, 2006, 25–47
[21] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI
[22] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. Matem. Mekhan., 1990, no. 1, 79–86
[23] Tanabe Y., Kaneko K., “Behavior of a falling paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375 | DOI
[24] Mahadevan L., Aref H., Jones S. W., “Comment on «Behavior of a falling paper»”, Phys. Rev. Lett., 75:7 (1995), 1420 | DOI
[25] Tanabe Y., Kaneko K., “Tanabe and Kaneko Reply”, Phys. Rev. Lett., 75:7 (1995), 1421 | DOI
[26] Mahadevan L., “Tumbling of a falling card”, C. R. Acad. Sci. Paris, Ser. 2b, 323 (1996), 729–736
[27] Belmonte A., Eisenberg H., Moses E., “From flutter to tumble: Inertial drag and froude similarity in falling paper”, Phys. Rev. Lett., 81:2 (1998), 345–348 | DOI
[28] Andersen A., Pesavento U., Wang Z. J., “Analysis of transitions between fluttering, tumbling and steady descent of falling cards”, J. Fluid Mech., 541 (2005), 91–104 | DOI
[29] Pesavento U., Wang Z. J., “Falling paper: Navier–Stokes solutions, model of fluid forces, and center of mass elevation”, Phys. Rev. Lett., 93:14 (2004), 144501, 4 pp. | DOI
[30] Andersen A., Pesavento U., Wang Z. J., “Unsteady aerodynamics of fluttering and tumbling plates”, J. Fluid Mech., 541 (2005), 65–90 | DOI
[31] Noor D. Z., Chern M. J., Horng T. L., “Study of a freely falling ellipse with a variety of aspect ratios and initial angles”, Proc. of the 22nd Internat. Conf. on Parallel Computational Fluid Dynamics (2010) http://www1.math.fcu.edu.tw/\allowbreakt̃lhorng/paper/Extended_abstract.pdf
[32] Caetano V. F. R., Calculation of the dynamic behavior of a falling plate or disk in a fluid, , 2010 https://fenix.tecnico.ulisboa.pt/downloadFile/395142133553/resumo.pdf
[33] Dupleich P., Rotation in free fall of rectangular wings of elongated shape, , UNT Digital Library, 1949 http://digital.library.unt.edu/ark:/67531/metadc64688/
[34] Huang W., Liu H., Wang F., Wu J., Zhang H. P., “Experimental study of a freely falling plate with an inhomogeneous mass distribution”, Phys. Rev. E, 88:5 (2013), 053008, 7 pp. | DOI
[35] Mahadevan L., Ryu W. S., Samuel A. D. T., “Tumbling cards”, Phys. Fluids, 11:1 (1999), 1–3 | DOI
[36] Field S. B., Klaus M., Moore M. G., Nori F., “Chaotic dynamics of falling disks”, Nature, 388:6639 (1997), 252–254 | DOI
[37] Heisinger L., Newton P., Kanso E., “Coins falling in water”, J. Fluid Mech., 742 (2014), 243–253 | DOI
[38] Leweke T., Thompson M. C., Hourigan K., “Motion of a Möbius band in free fall”, J. Fluids Struct., 25:4 (2009), 687–696 | DOI
[39] Lugt H. J., “Autorotation”, Annu. Rev. Fluid Mech., 15:1 (1983), 123–147 | DOI
[40] Paoletti P., Mahadevan L., “Planar controlled gliding, tumbling and descent”, J. Fluid Mech., 689 (2011), 489–516 | DOI
[41] Ramodanov S. M., Tenenev V. A., “Dvizhenie tela s peremennoi geometriei mass v bezgranichnoi vyazkoi zhidkosti”, Nelineinaya dinamika, 7:3 (2011), 635–647
[42] Fernandes A. C., Sefat S. M., “Bifurcation from fluttering to autorotation of a hinged vertical flat plate submitted to a uniform current”, Proc. of the 11th Internat. Conf. on the Stability of Ships and Ocean Vehicles (23–28 September 2012, Athens, Greece), 1–12
[43] Michelin S., Smith S. G. L., “Falling cards and flapping flags: Understanding fluid–solid interactions using an unsteady point vortex model”, Theor. Comp. Fluid Dyn., 24:1–4 (2010), 195–200 | DOI
[44] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959, 915 pp.
[45] Butenin N. V., Neimark Yu. I., Fufaev N. A., Vvedenie v teoriyu nelineinykh kolebanii, 2-e izd., pererab., Nauka, M., 1987, 382 pp.
[46] Lorents E., “Determinirovannoe neperiodicheskoe techenie”, Strannye attraktory, eds. Ya. G. Sinai, L. I. Shilnikov, Mir, M., 1981, 88–116
[47] Sparrow C., The Lorenz equations: Bifurcations, chaos, and strange attractors, Springer, New York, 1982, 269 pp.
[48] Shilnikov L., “Mathematical problems of nonlinear dynamics: A tutorial”, J. Franklin Inst., 334:5 (1997), 793–864 | DOI
[49] Tucker W., “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2:1 (2002), 53–117 | DOI
[50] Pikovskii A. S., Rabinovich M. I., Trakhtengerts V. Yu., “Vozniknovenie stokhastichnosti pri raspadnom ogranichenii parametricheskoi neustoichivosti”, ZhETF, 74 (1978), 1366–1374
[51] Hénon M., “On the numerical computation of Poincaré maps”, Phys. D, 5 (1982), 412–414 | DOI
[52] Swift J. W., Wiesenfeld K., “Suppression of period doubling in symmetric systems”, Phys. Rev. Lett., 52:9 (1984), 705–708 | DOI
[53] Magnus K., Kolebaniya: Vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.
[54] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI
[55] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, UFN, 141:10 (1983), 343–374 | DOI