On rational integrals of geodesic flows
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 439-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the problem of first integrals of the equations of geodesics on two-dimensional surfaces that are rational in the velocities (or momenta). The existence of nontrivial rational integrals with given values of the degrees of the numerator and the denominator is proved using the Cauchy–Kovalevskaya theorem.
Keywords: conformal coordinates, rational integral, irreducible integrals, Cauchy–Kovalevskaya theorem.
@article{ND_2014_10_4_a3,
     author = {Valery V. Kozlov},
     title = {On rational integrals of geodesic flows},
     journal = {Russian journal of nonlinear dynamics},
     pages = {439--445},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/}
}
TY  - JOUR
AU  - Valery V. Kozlov
TI  - On rational integrals of geodesic flows
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 439
EP  - 445
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/
LA  - ru
ID  - ND_2014_10_4_a3
ER  - 
%0 Journal Article
%A Valery V. Kozlov
%T On rational integrals of geodesic flows
%J Russian journal of nonlinear dynamics
%D 2014
%P 439-445
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/
%G ru
%F ND_2014_10_4_a3
Valery V. Kozlov. On rational integrals of geodesic flows. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 439-445. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/

[1] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies; with an introduction to the problem of three bodies, 3rd ed., Cambridge Univ. Press, Cambridge, 1927, 456 pp. | MR

[2] Birkhoff G. D., Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp.

[3] Kozlov V. V., “Integrable and nonintegrable Hamiltonian systems”, Soviet Sci. Rev. Sect. C. Math. Phys. Rev., 8 (1989), 1–81 | MR | Zbl

[4] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izdatelskii dom «Udmurtskii universitet», Izhevsk, 1995, 432 pp.

[5] Ten V. V., “Lokalnye integraly geodezicheskikh potokov”, Regul. Chaotic Dyn., 2:2 (1997), 87–89

[6] Poincaré H., “Sur le méthode de Bruns”, C. R. Acad. Sci. Paris, 123 (1896), 1224–1228

[7] Albouy A., Projective dynamics and first integrals, 2006, arXiv: 1401.1509

[8] Collinson C. D., “A note on the integrability conditions for the existence of rational first integrals of the geodesic equations in a Riemannian space”, Gen. Relativity Gravitation, 18:2 (1986), 207–214 | MR | Zbl

[9] Collinson C. D., O'Donnell P. J., “A class of empty spacetimes admitting a rational first integral of the geodesic equation”, Gen. Relativity Gravitation, 24:4 (1992), 451–455 | DOI | MR | Zbl