Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_4_a3, author = {Valery V. Kozlov}, title = {On rational integrals of geodesic flows}, journal = {Russian journal of nonlinear dynamics}, pages = {439--445}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/} }
Valery V. Kozlov. On rational integrals of geodesic flows. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 4, pp. 439-445. http://geodesic.mathdoc.fr/item/ND_2014_10_4_a3/
[1] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies; with an introduction to the problem of three bodies, 3rd ed., Cambridge Univ. Press, Cambridge, 1927, 456 pp. | MR
[2] Birkhoff G. D., Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp.
[3] Kozlov V. V., “Integrable and nonintegrable Hamiltonian systems”, Soviet Sci. Rev. Sect. C. Math. Phys. Rev., 8 (1989), 1–81 | MR | Zbl
[4] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izdatelskii dom «Udmurtskii universitet», Izhevsk, 1995, 432 pp.
[5] Ten V. V., “Lokalnye integraly geodezicheskikh potokov”, Regul. Chaotic Dyn., 2:2 (1997), 87–89
[6] Poincaré H., “Sur le méthode de Bruns”, C. R. Acad. Sci. Paris, 123 (1896), 1224–1228
[7] Albouy A., Projective dynamics and first integrals, 2006, arXiv: 1401.1509
[8] Collinson C. D., “A note on the integrability conditions for the existence of rational first integrals of the geodesic equations in a Riemannian space”, Gen. Relativity Gravitation, 18:2 (1986), 207–214 | MR | Zbl
[9] Collinson C. D., O'Donnell P. J., “A class of empty spacetimes admitting a rational first integral of the geodesic equation”, Gen. Relativity Gravitation, 24:4 (1992), 451–455 | DOI | MR | Zbl