Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_3_a9, author = {Alexey V. Borisov and Alexey O. Kazakov and Igor R. Sataev}, title = {Regular and chaotic attractors in the nonholonomic model of {Chapygin{\textquoteright}s} ball}, journal = {Russian journal of nonlinear dynamics}, pages = {361--380}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/} }
TY - JOUR AU - Alexey V. Borisov AU - Alexey O. Kazakov AU - Igor R. Sataev TI - Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball JO - Russian journal of nonlinear dynamics PY - 2014 SP - 361 EP - 380 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/ LA - ru ID - ND_2014_10_3_a9 ER -
%0 Journal Article %A Alexey V. Borisov %A Alexey O. Kazakov %A Igor R. Sataev %T Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball %J Russian journal of nonlinear dynamics %D 2014 %P 361-380 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/ %G ru %F ND_2014_10_3_a9
Alexey V. Borisov; Alexey O. Kazakov; Igor R. Sataev. Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 361-380. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/
[1] Walker G. T., “On a curious dynamical property of celts”, Proc. Cambridge Phil. Soc., 8:5 (1895), 305–306
[2] Astapov I. S., “Ob ustoichivosti vrascheniya keltskogo kamnya”, Vestn. MGU. Ser. 1. Matem. Mekhan., 1980, no. 2, 97–100 | MR
[3] Karapetyan A. V., “O realizatsii negolonomnykh svyazei silami vyazkogo treniya i ustoichivost keltskikh kamnei”, PMM, 45:1 (1981), 42–51 | MR | Zbl
[4] Markeev A. P., “O dinamike tverdogo tela na absolyutno sherokhovatoi ploskosti”, PMM, 47:4 (1983), 575–582 | Zbl
[5] Kane T. R., Levinson D. A., “A realistic solution of the symmetric top problem”, J. Appl. Mech., 45:4 (1978), 903–909 | DOI | MR
[6] Aleshkevich V. A., Dedenko L. G., Karavaev V. A., Lektsii po mekhanike tverdogo tela, MGU, M., 1997, 72 pp.
[7] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top”, Int. J. Robust Nonlinear Control, 18:9 (2008), 905–945 | DOI | MR | Zbl
[8] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 76–101 | Zbl
[9] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Problema dreifa i vozvraschaemosti pri kachenii shara Chaplygina”, Nelineinaya dinamika, 9:4 (2013), 721–754
[11] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[12] Routh E. J., A treatise on the dynamics of a system of rigid bodies, v. 2, The advanced part, 6th ed., Macmillan, New York, 1905 ; Dover, New York, 1955 (reprint) | Zbl | Zbl
[13] Lynch P., Bustamante M. D., “Precession and recession of the rock'n'roller”, J. Phys. A, 42:42 (2009), 425203, 25 pp. | DOI | MR | Zbl
[14] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202
[15] Kazakov A. O., “Fenomeny khaoticheskoi dinamiki v zadache o kachenii rok-n-rollera bez vercheniya”, Nelineinaya dinamika, 9:2 (2013), 309–325
[16] Kazakov A. O., “On the chaotic dynamics of a rubber ball with three internal rotors”, Nonlinear Dynamics Mobile Robotics, 2:1 (2014), 73–97 | MR
[17] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Dinamicheskie sistemy i smezhnye voprosy, Sb. st.: K 60-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 216, ed. E. F. Mischenko, Nauka, M., 1997, 76–125 | Zbl
[18] Lamb J. S. W., Stenkin O. V., “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl
[19] Delshams A., Gonchenko S. V., Gonchenko A. S., Lázaro J. T., Sten'kin O., “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–33 | DOI | MR | Zbl
[20] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518
[21] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI
[22] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi mekhanike «keltskogo kamnya»”, Nelineinaya dinamika, 8:4 (2012), 735–762
[23] Gonchenko A. S., Gonchenko S. V., “O suschestvovanii attraktorov lorentsevskogo tipa v negolonomnoi modeli «keltskogo kamnya»”, Nelineinaya dinamika, 9:1 (2013), 77–89 | MR
[24] Gonchenko A. S., “Ob attraktorakh lorentsevskogo tipa v modeli keltskogo kamnya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 3–11
[25] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp.
[26] Walker J., “The amateur scientist: The mysterious «rattleback»: A stone that spins in one direction and then reverses”, Sci. Am., 241 (1979), 172–184 | DOI
[27] Borisov A. V., Kilin A. A., Mamaev I. S., “Novye effekty v dinamike keltskikh kamnei”, Doklady RAN, 408:2 (2006), 192–195 | MR | Zbl
[28] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. 1; 2”, Meccanica, 15 (1980), 9–30 | DOI
[29] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations, v. 1, Nonstiff problems, Springer-Verlag, Berlin, 1987, 480 pp. | MR | Zbl
[30] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.
[31] Afraimovich V. S., Shilnikov L. P., “Invariantnye dvumernye tory, ikh razrushenie i stokhastichnost”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb., ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1983, 3–26
[32] Gonchenko S. V., Ovsyannikov I. I., Simó C., Turaev D., “Three-dimensional Hénon-like maps and wild Lorenz-like attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[33] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya dinamika, 8:1 (2012), 3–28
[34] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Turaev D. V., “Simple scenarios of onset of chaos in three-dimensional maps”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:08 (2014), 1440005, 25 pp. | DOI | MR