Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 361-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study both analytically and numerically the dynamics of an inhomogeneous ball on a rough horizontal plane under the infuence of gravity. A nonholonomic constraint of zero velocity at the point of contact of the ball with the plane is imposed. In the case of an arbitrary displacement of the center of mass of the ball, the system is nonintegrable without the property of phase volume conservation. We show that at certain parameter values the unbalanced ball exhibits the effect of reversal (the direction of the ball rotation reverses). Charts of dynamical regimes on the parameter plane are presented. The system under consideration exhibits diverse chaotic dynamics, in particular, the figure-eight chaotic attractor, which is a special type of pseudohyperbolic chaos.
Keywords: Chaplygin’s top, rolling without slipping, reversibility, involution, integrability, reverse, chart of dynamical regimes, strange attractor.
@article{ND_2014_10_3_a9,
     author = {Alexey V. Borisov and Alexey O. Kazakov and Igor R. Sataev},
     title = {Regular and chaotic attractors in the nonholonomic model of {Chapygin{\textquoteright}s} ball},
     journal = {Russian journal of nonlinear dynamics},
     pages = {361--380},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Alexey O. Kazakov
AU  - Igor R. Sataev
TI  - Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 361
EP  - 380
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/
LA  - ru
ID  - ND_2014_10_3_a9
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Alexey O. Kazakov
%A Igor R. Sataev
%T Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball
%J Russian journal of nonlinear dynamics
%D 2014
%P 361-380
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/
%G ru
%F ND_2014_10_3_a9
Alexey V. Borisov; Alexey O. Kazakov; Igor R. Sataev. Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 361-380. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a9/

[1] Walker G. T., “On a curious dynamical property of celts”, Proc. Cambridge Phil. Soc., 8:5 (1895), 305–306

[2] Astapov I. S., “Ob ustoichivosti vrascheniya keltskogo kamnya”, Vestn. MGU. Ser. 1. Matem. Mekhan., 1980, no. 2, 97–100 | MR

[3] Karapetyan A. V., “O realizatsii negolonomnykh svyazei silami vyazkogo treniya i ustoichivost keltskikh kamnei”, PMM, 45:1 (1981), 42–51 | MR | Zbl

[4] Markeev A. P., “O dinamike tverdogo tela na absolyutno sherokhovatoi ploskosti”, PMM, 47:4 (1983), 575–582 | Zbl

[5] Kane T. R., Levinson D. A., “A realistic solution of the symmetric top problem”, J. Appl. Mech., 45:4 (1978), 903–909 | DOI | MR

[6] Aleshkevich V. A., Dedenko L. G., Karavaev V. A., Lektsii po mekhanike tverdogo tela, MGU, M., 1997, 72 pp.

[7] Shen J., Schneider D. A., Bloch A. M., “Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top”, Int. J. Robust Nonlinear Control, 18:9 (2008), 905–945 | DOI | MR | Zbl

[8] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 76–101 | Zbl

[9] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[10] Borisov A. V., Kilin A. A., Mamaev I. S., “Problema dreifa i vozvraschaemosti pri kachenii shara Chaplygina”, Nelineinaya dinamika, 9:4 (2013), 721–754

[11] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[12] Routh E. J., A treatise on the dynamics of a system of rigid bodies, v. 2, The advanced part, 6th ed., Macmillan, New York, 1905 ; Dover, New York, 1955 (reprint) | Zbl | Zbl

[13] Lynch P., Bustamante M. D., “Precession and recession of the rock'n'roller”, J. Phys. A, 42:42 (2009), 425203, 25 pp. | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[15] Kazakov A. O., “Fenomeny khaoticheskoi dinamiki v zadache o kachenii rok-n-rollera bez vercheniya”, Nelineinaya dinamika, 9:2 (2013), 309–325

[16] Kazakov A. O., “On the chaotic dynamics of a rubber ball with three internal rotors”, Nonlinear Dynamics Mobile Robotics, 2:1 (2014), 73–97 | MR

[17] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Dinamicheskie sistemy i smezhnye voprosy, Sb. st.: K 60-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 216, ed. E. F. Mischenko, Nauka, M., 1997, 76–125 | Zbl

[18] Lamb J. S. W., Stenkin O. V., “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl

[19] Delshams A., Gonchenko S. V., Gonchenko A. S., Lázaro J. T., Sten'kin O., “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–33 | DOI | MR | Zbl

[20] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518

[21] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 173:4 (2003), 407–418 | DOI

[22] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi mekhanike «keltskogo kamnya»”, Nelineinaya dinamika, 8:4 (2012), 735–762

[23] Gonchenko A. S., Gonchenko S. V., “O suschestvovanii attraktorov lorentsevskogo tipa v negolonomnoi modeli «keltskogo kamnya»”, Nelineinaya dinamika, 9:1 (2013), 77–89 | MR

[24] Gonchenko A. S., “Ob attraktorakh lorentsevskogo tipa v modeli keltskogo kamnya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 3–11

[25] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp.

[26] Walker J., “The amateur scientist: The mysterious «rattleback»: A stone that spins in one direction and then reverses”, Sci. Am., 241 (1979), 172–184 | DOI

[27] Borisov A. V., Kilin A. A., Mamaev I. S., “Novye effekty v dinamike keltskikh kamnei”, Doklady RAN, 408:2 (2006), 192–195 | MR | Zbl

[28] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. 1; 2”, Meccanica, 15 (1980), 9–30 | DOI

[29] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations, v. 1, Nonstiff problems, Springer-Verlag, Berlin, 1987, 480 pp. | MR | Zbl

[30] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.

[31] Afraimovich V. S., Shilnikov L. P., “Invariantnye dvumernye tory, ikh razrushenie i stokhastichnost”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb., ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1983, 3–26

[32] Gonchenko S. V., Ovsyannikov I. I., Simó C., Turaev D., “Three-dimensional Hénon-like maps and wild Lorenz-like attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3493–3508 | DOI | MR | Zbl

[33] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya dinamika, 8:1 (2012), 3–28

[34] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Turaev D. V., “Simple scenarios of onset of chaos in three-dimensional maps”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:08 (2014), 1440005, 25 pp. | DOI | MR