Stokes waves in vortical fluid
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 309-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the second task of Stokes for the swirled knitting of incompressible liquid is provided. The found solutions represent the elliptic polarized cross waves. The solution of the second Stokes problem for the swirl flow of a viscous incompressible fluid is presented.
Keywords: second Stokes problem, layered flows, vortical fluid, elliptical polarization.
Mots-clés : exact solution, wave amplification
@article{ND_2014_10_3_a4,
     author = {Sergey N. Aristov and Eugeny Yu. Prosviryakov},
     title = {Stokes waves in vortical fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--318},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_3_a4/}
}
TY  - JOUR
AU  - Sergey N. Aristov
AU  - Eugeny Yu. Prosviryakov
TI  - Stokes waves in vortical fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 309
EP  - 318
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_3_a4/
LA  - ru
ID  - ND_2014_10_3_a4
ER  - 
%0 Journal Article
%A Sergey N. Aristov
%A Eugeny Yu. Prosviryakov
%T Stokes waves in vortical fluid
%J Russian journal of nonlinear dynamics
%D 2014
%P 309-318
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_3_a4/
%G ru
%F ND_2014_10_3_a4
Sergey N. Aristov; Eugeny Yu. Prosviryakov. Stokes waves in vortical fluid. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 3, pp. 309-318. http://geodesic.mathdoc.fr/item/ND_2014_10_3_a4/

[1] Stokes G. G., “On the effect of the internal friction of fluid on the motion of pendulums”, Trans. Cambridge Philos. Soc., 9 (1851), 8–106

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt., v. 6, Gidrodinamika, 5-e izd., Fizmatlit, M., 2006, 736 pp.

[3] Aristov S. N., Knyazev D. V., Polyanin A. D., “Tochnye resheniya uravnenii Nave–Stoksa s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, TOKhT, 43:5 (2009), 547–566

[4] Barinov V. A., “Rasprostranenie voln po svobodnoi poverkhnosti vyazkoi zhidkosti”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2010, no. 2, 18–31 | MR

[5] Pritchard D., McArdle C. R., Wilson S. K., “The Stokes boundary layer for a power-law fluid”, J. Non-Newton Fluid, 166:12–13 (2011), 745–753 | DOI | Zbl

[6] Rajagopal K. R., “A note on unsteady unidirectional flows of a non-Newtonian fluid”, Internat. J. Non-Linear Mech., 17:5–6 (1982), 369–373 | DOI | MR | Zbl

[7] Rajagopal K. R., Na T. Y., “On Stokes' problem for a non-Newtonian fluid”, Acta Mech., 48:3–4 (1983), 233–239 | DOI | Zbl

[8] Hayat T., Asghar S., Siddiqui A. M., “Stokes' second problem for a Johnson–Segalman fluid”, Appl. Math. Comput., 148:3 (2004), 697–706 | DOI | MR | Zbl

[9] Abrashkin A. A., Yakubovich E. I., Vikhrevaya dinamika v lagranzhevom opisanii, Fizmatlit, M., 2006, 176 pp.

[10] Aristov S. N., Shvarts K. G., Vikhrevye techeniya v tonkikh sloyakh zhidkosti, VyatGU, Kirov, 2011, 207 pp.

[11] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957/58), 391–395 | DOI | MR

[12] Aristov S. N., Prosviryakov E. Yu., “Neodnorodnye techeniya Kuetta”, Nelineinaya dinamika, 10:2 (2014), 177–182 | MR | Zbl