On an integrable deformation of the Kowalevski top
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 223-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an application of the Poisson brackets deformation theory to the construction of the integrable perturbations of the given integrable systems. The main examples are the known integrable perturbations of the Kowalevski top for which we get new bi-Hamiltonian structures in the framework of the deformation theory.
Keywords: Poisson geometry, Kowalevski top.
@article{ND_2014_10_2_a8,
     author = {Alexander V. Vershilov and Yury A. Grigoryev and Andrey V. Tsiganov},
     title = {On an integrable deformation of the {Kowalevski} top},
     journal = {Russian journal of nonlinear dynamics},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a8/}
}
TY  - JOUR
AU  - Alexander V. Vershilov
AU  - Yury A. Grigoryev
AU  - Andrey V. Tsiganov
TI  - On an integrable deformation of the Kowalevski top
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 223
EP  - 236
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a8/
LA  - ru
ID  - ND_2014_10_2_a8
ER  - 
%0 Journal Article
%A Alexander V. Vershilov
%A Yury A. Grigoryev
%A Andrey V. Tsiganov
%T On an integrable deformation of the Kowalevski top
%J Russian journal of nonlinear dynamics
%D 2014
%P 223-236
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a8/
%G ru
%F ND_2014_10_2_a8
Alexander V. Vershilov; Yury A. Grigoryev; Andrey V. Tsiganov. On an integrable deformation of the Kowalevski top. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a8/

[1] Bobenko A. I., Reyman A. G., Semenov-Tian-Shansky M. A., “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122:2 (1989), 321–354 | DOI | MR

[2] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 1999, 464 pp. | MR

[3] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003, 296 pp. | MR

[4] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[5] Falqui G., “Lax representation and Poisson geometry of the Kowalevski top”, J. Phys. A, 34:11 (2001), 2077–2085 | DOI | MR | Zbl

[6] Golubchik I. Z., Sokolov V. V., “Faktorizatsiya algebry petel i integriruemye uravneniya tipa volchkov”, TMF, 141:1 (2004), 3–23 | DOI | MR

[7] Ibort A., Magri F., Marmo G., “Bihamiltonian structures and Stäckel separability”, J. Geom. Phys., 33:3–4 (2000), 210–228 | DOI | MR | Zbl

[8] Komarov I. V., “Bazis Kovalevskoi dlya atoma vodoroda”, TMF, 47:1 (1981), 67–72 | MR

[9] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of the Kowalevski top”, J. Phys. A, 36:29 (2003), 8035–8048 | DOI | MR | Zbl

[10] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer, New York, 1999, 582 pp. | DOI | MR | Zbl

[11] Marshall I. D., “The Kowalevski top: Its $r$-matrix interpretation and bi-Hamiltonian formulation”, Comm. Math. Phys., 191:3 (1998), 723–734 | DOI | MR | Zbl

[12] Reiman A. G., Semenov-Tyan-Shanskii M. A., Integriruemye sistemy: Teoretiko-gruppovoi podkhod, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.

[13] Ryabov P. E., “Fazovaya topologiya odnoi neprivodimoi integriruemoi zadachi dinamiki tverdogo tela”, TMF, 176:2 (2013), 205–221 | DOI | Zbl

[14] Sokolov V. V., “A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, The Kowalevski property, Proc. of the Kowalevski Workshop on Mathematical Methods of Regular Dynamics (MMRD), dedicated to the 150th anniversary of Sophie Kowalevski's birth (University of Leeds, Leeds, April 12–15, 2000), CRM Proc. Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, R.I., 2002, 304–315 | MR

[15] Sokolov V. V., Tsyganov A. V., “Pary Laksa dlya deformirovannykh volchkov Kovalevskoi i Goryacheva–Chaplygina”, TMF, 131:1 (2002), 118–125 | DOI | MR | Zbl

[16] Tsyganov A. V., “Integriruemye deformatsii volchkov, svyazannykh s algebroi $so(p,q)$”, TMF, 141:1 (2004), 24–37 | DOI | MR | Zbl

[17] Tsiganov A. V., “The Poisson bracket compatible with the classical reflection equation algebra”, Regul. Chaotic Dyn., 13:3 (2008), 191–203 | DOI | MR | Zbl

[18] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44:10 (2011), 105203, 21 | DOI | MR | Zbl