Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a particle equilibria with respect to axes of precession and of dynamical symmetry of a rigid body in assumption that the body gravitational field is composed of gravitational fields of two conjugate complex masses being on imaginary distance. We establish that there are not more then two of these equilibria in the plane passing the body mass center orthogonally to the precession axis. Using terminology of the Generalized Restricted Circular Problem of Three Bodies, we call these equilibria the Triangular Libration Points (TLP). We find TLPs' coordinates analytically and we trace their evolution at changing values of the system parameters. We also prove that TLPs are instable.
Keywords: problem of three bodies, libration points, relative equilibrium, rigid body, asteroid.
@article{ND_2014_10_2_a7,
     author = {Alexander V. Rodnikov},
     title = {Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers},
     journal = {Russian journal of nonlinear dynamics},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a7/}
}
TY  - JOUR
AU  - Alexander V. Rodnikov
TI  - Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 213
EP  - 222
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a7/
LA  - ru
ID  - ND_2014_10_2_a7
ER  - 
%0 Journal Article
%A Alexander V. Rodnikov
%T Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
%J Russian journal of nonlinear dynamics
%D 2014
%P 213-222
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a7/
%G ru
%F ND_2014_10_2_a7
Alexander V. Rodnikov. Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a7/

[1] Aksenov E. P., Grebennikov E. A., Dëmin V. G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astronomicheskii zhurnal, 40:2 (1963), 363–375 | MR

[2] Szebehely V., Theory of orbits: The restricted problem of three bodies, Acad. Press, New York, 1967, 668 pp. | Zbl

[3] Dëmin V. G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2010, 420 pp.

[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[5] Kosenko I. I., “O tochkakh libratsii vblizi gravitiruyuschego vraschayuschegosya trekhosnogo ellipsoida”, PMM, 45:1 (1981), 26–33 | MR | Zbl

[6] Kosenko I. I., “Tochki libratsii v zadache o trekhosnom gravitiruyuschem ellipsoide: Geometriya oblasti ustoichivosti”, Kosmicheskie issledovaniya, 19:2 (1981), 200–209

[7] Lanoix E. L.-M., Misra A. K., “Near-Earth asteroid missions using tether sling shot assist”, J. Spacecraft Rockets, 37:4 (2000), 475–480 | DOI

[8] Vasilkova O. O., “Three-dimensional periodic motion in the vicinity of the equilibrium points of an asteroid”, Astronom. Astrophys., 430:2 (2005), 713–723 | DOI | Zbl

[9] Rodnikov A. V., “O polozheniyakh ravnovesiya gruza na trose, zakreplennom na gantelevidnoi kosmicheskoi stantsii, dvizhuscheisya po krugovoi geotsentricheskoi orbite”, Kosmicheskie issledovaniya, 44:1 (2006), 62–72

[10] Beletskii V. V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmicheskie issledovaniya, 45:5 (2007), 435–442

[11] Beletskii V. V., Rodnikov A. V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmicheskie issledovaniya, 46:1 (2008), 42–50

[12] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556

[13] Rodnikov A. V., “O dvizhenii materialnoi tochki vdol leera, zakreplennogo na pretsessiruyuschem tverdom tele”, Nelineinaya dinamika, 7:2 (2011), 295–311 | MR

[14] Beletskii V. V., Rodnikov A. V., “Komplanarnye tochki libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Nelineinaya dinamika, 7:3 (2011), 569–576

[15] Misra A. K., “Dynamics of a tether attached to an asteroid”, 7th Internat. Workshop and Advanced School «Spaceflight Dynamics and Control», 2012 http://www.aerospace.ubi.pt/workshop2012/Abstract_Misra.pdf

[16] Rodnikov A. V., “O komplanarnykh ravnovesiyakh kosmicheskoi stantsii na trose, zakreplennom na pretsessiruyuschem asteroide”, Nelineinaya dinamika, 8:2 (2012), 309–322 | MR

[17] Beletskii V. V., Rodnikov A. V., “Tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae mnimogo rasstoyaniya mezhdu prityagivayuschimi tsentrami”, Nelineinaya dinamika, 8:5 (2012), 931–940

[18] Rodnikov A. V., “Komplanarnye tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae kompleksno-sopryazhennykh mass prityagivayuschikh tsentrov”, Nelineinaya dinamika, 9:4 (2013), 697–710