Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_2_a6, author = {Ivan A. Bizyaev}, title = {On a generalization of systems of {Calogero} type}, journal = {Russian journal of nonlinear dynamics}, pages = {209--212}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/} }
Ivan A. Bizyaev. On a generalization of systems of Calogero type. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 209-212. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems: The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41 | DOI | MR | Zbl
[2] Tsiganov A. V., “On a trivial family of noncommutative integrable systems”, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 015, 13 pp. | MR | Zbl
[3] Albouy A., Chenciner A., “Le problème des $n$ corps et les distances mutuelles”, Invent. Math., 131:1 (1998), 151–184 | DOI | MR | Zbl
[4] Yakobi K., Lektsii po dinamike, ONTI, M.–L., 1936, 272 pp.
[5] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, UdGU, Izhevsk, 1999, 464 pp. | MR
[6] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[7] Bizyaev I. A., Borisov A. V., Mamaev I. S., “Superintegrable generalizations of the Kepler and Hook problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434 | DOI | MR
[8] Gonera C., “On the superintegrability of Calogero–Moser–Sutherland model”, J. Phys. A, 31:19 (1998), 4465–4472 | DOI | MR | Zbl
[9] Ranada M. F., “Superintegrability of the Calogero–Moser system: Constants of motion, master symmetries and time-dependent symmetries”, J. Math. Phys., 40 (1999), 236–247 | DOI | MR | Zbl
[10] Grigorev Yu. A., Tsiganov A. V., Deformations of the Poisson brackets and the Kowalevski top, 2013, arXiv: 1310.8032