On a generalization of systems of Calogero type
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 209-212

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a three-body system on a straight line in a potential field proposed by Tsiganov. The Liouville integrability of this system is shown. Reduction and separation of variables are performed.
Keywords: Calogero systems, reduction, integrable systems, Jacobi problem.
@article{ND_2014_10_2_a6,
     author = {Ivan A. Bizyaev},
     title = {On a generalization of systems of {Calogero} type},
     journal = {Russian journal of nonlinear dynamics},
     pages = {209--212},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
TI  - On a generalization of systems of Calogero type
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 209
EP  - 212
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/
LA  - ru
ID  - ND_2014_10_2_a6
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%T On a generalization of systems of Calogero type
%J Russian journal of nonlinear dynamics
%D 2014
%P 209-212
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/
%G ru
%F ND_2014_10_2_a6
Ivan A. Bizyaev. On a generalization of systems of Calogero type. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 209-212. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a6/