Inhomogeneous Couette flow
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 177-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have obtained a solution of the problem within the exact solutions of the Navier–Stokes equations which describes the flow of a viscous incompressible fluid caused by spatially inhomogeneous wind stresses.
Mots-clés : Couette flow, exact solution
Keywords: redefined boundary-value problem, liquid vorticity, stream function, equatorial countercurrent.
@article{ND_2014_10_2_a3,
     author = {Sergey N. Aristov and Eugeny Yu. Prosviryakov},
     title = {Inhomogeneous {Couette} flow},
     journal = {Russian journal of nonlinear dynamics},
     pages = {177--182},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a3/}
}
TY  - JOUR
AU  - Sergey N. Aristov
AU  - Eugeny Yu. Prosviryakov
TI  - Inhomogeneous Couette flow
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 177
EP  - 182
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a3/
LA  - ru
ID  - ND_2014_10_2_a3
ER  - 
%0 Journal Article
%A Sergey N. Aristov
%A Eugeny Yu. Prosviryakov
%T Inhomogeneous Couette flow
%J Russian journal of nonlinear dynamics
%D 2014
%P 177-182
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a3/
%G ru
%F ND_2014_10_2_a3
Sergey N. Aristov; Eugeny Yu. Prosviryakov. Inhomogeneous Couette flow. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 177-182. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a3/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 tt., v. 6, Gidrodinamika, 5-e izd., Fizmatlit, M., 2006, 736 pp.

[2] Couette M., “Études sur le frottement des liquides”, Ann. Chim. Phys. Sér. 6, 21 (1890), 433–510

[3] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Ration. Mech. Anal., 1:1 (1958), 391–395 | DOI | MR | Zbl

[4] Aristov S. N., Knyazev D. V., Polyanin A. D., “Tochnye resheniya uravnenii Nave–Stoksa s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, TOKhT, 43:5 (2009), 547–566

[5] Tyrtyshnikov E. E., Matrichnyi analiz i lineinaya algebra, Fizmatlit, M., 2007, 480 pp.

[6] Korotaev G. K., Mikhailova E. N., Shapiro N. B., Teoriya ekvatorialnykh protivotechenii v Mirovom okeane, Nauk. dumka, Kiev, 1986, 208 pp.