Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176

Voir la notice de l'article provenant de la source Math-Net.Ru

To implicitly singularly perturbed autonomous systems of ordinary differential equations of second order found some sufficient conditions for the existence of periodic solutions of relaxation (self-oscillation), determined by means of an auxiliary dynamical system that implements a sliding mode. It is shown that so defined periodic motions have typical properties of self-oscillations of relaxation defined autonomous systems of ordinary differential equations with a small parameter at the highest derivative.
Keywords: implicitly singularly perturbed system, sliding mode, the relaxation periodic solution, self-oscillations.
@article{ND_2014_10_2_a2,
     author = {Vladimir V. Gotsulenko},
     title = {Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {157--176},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Gotsulenko
TI  - Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 157
EP  - 176
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
LA  - ru
ID  - ND_2014_10_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Gotsulenko
%T Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
%J Russian journal of nonlinear dynamics
%D 2014
%P 157-176
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
%G ru
%F ND_2014_10_2_a2
Vladimir V. Gotsulenko. Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/