Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

To implicitly singularly perturbed autonomous systems of ordinary differential equations of second order found some sufficient conditions for the existence of periodic solutions of relaxation (self-oscillation), determined by means of an auxiliary dynamical system that implements a sliding mode. It is shown that so defined periodic motions have typical properties of self-oscillations of relaxation defined autonomous systems of ordinary differential equations with a small parameter at the highest derivative.
Keywords: implicitly singularly perturbed system, sliding mode, the relaxation periodic solution, self-oscillations.
@article{ND_2014_10_2_a2,
     author = {Vladimir V. Gotsulenko},
     title = {Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {157--176},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Gotsulenko
TI  - Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 157
EP  - 176
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
LA  - ru
ID  - ND_2014_10_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Gotsulenko
%T Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane
%J Russian journal of nonlinear dynamics
%D 2014
%P 157-176
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
%G ru
%F ND_2014_10_2_a2
Vladimir V. Gotsulenko. Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 918 pp. | MR | Zbl

[2] Chezari L. L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 477 pp.

[3] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1966, 248 pp.

[4] Landa P. S., Nelineinye kolebaniya i volny, Librokom, M., 2010, 552 pp.

[5] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, PMM, 11:3 (1947), 313–328 | MR | Zbl

[6] Gotsulenko V. V., “Relaksatsionnye periodicheskie avtokolebaniya, opredelyaemye neyavno singulyarno vozmuschennymi sistemami obyknovennykh differentsialnykh uravnenii”, Tr. 4-oi Mezhdunar. nauch. konf. molodykh uchenykh po differentsialnym uravneniyam i ikh prilozheniyam, posvyaschennaya Ya. B. Lopatinskomu (15–17 noyabrya 2012 goda, Donetskii natsionalnyi universitet), 36–37 | MR

[7] Gotsulenko V. V., Gotsulenko V. N., “Analiz dinamicheskikh rezhimov v zamknutoi gidrosisteme s vozdushnoi podushkoi na vkhode v lopastnoi nasos”, Matem. modelirovanie, 2012, no. 2(27), 65–70 | MR

[8] Gotsulenko V. V., Gotsulenko V. N., “Self-oscillations (surging) of a single-stage centrifugal pump in the cavitation regime and their damping”, J. Eng. Phys. Thermophys., 86:4 (2013), 913–920 | DOI

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[10] Utkin V. I., Skolzyaschie rezhimy v zadachakh optimizatsii i upravleniya, Nauka, M., 1974, 272 pp.

[11] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 224 pp. | Zbl

[12] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, Nauka, M., 1972, 472 pp. | MR

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[14] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 560 pp.

[15] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, Nauka, M., 1990, 312 pp. | MR