Self-oscillations in implicit singularly perturbed dynamical systems on the plane
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To implicitly singularly perturbed autonomous systems of ordinary differential equations of second order found some sufficient conditions for the existence of periodic solutions of relaxation (self-oscillation), determined by means of an auxiliary dynamical system that implements a sliding mode. It is shown that so defined periodic motions have typical properties of self-oscillations of relaxation defined autonomous systems of ordinary differential equations with a small parameter at the highest derivative.
Keywords: implicitly singularly perturbed system, sliding mode, the relaxation periodic solution, self-oscillations.
@article{ND_2014_10_2_a2,
     author = {Vladimir V. Gotsulenko},
     title = {Self-oscillations in implicit singularly perturbed dynamical systems on~the~plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {157--176},
     year = {2014},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/}
}
TY  - JOUR
AU  - Vladimir V. Gotsulenko
TI  - Self-oscillations in implicit singularly perturbed dynamical systems on the plane
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 157
EP  - 176
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
LA  - ru
ID  - ND_2014_10_2_a2
ER  - 
%0 Journal Article
%A Vladimir V. Gotsulenko
%T Self-oscillations in implicit singularly perturbed dynamical systems on the plane
%J Russian journal of nonlinear dynamics
%D 2014
%P 157-176
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/
%G ru
%F ND_2014_10_2_a2
Vladimir V. Gotsulenko. Self-oscillations in implicit singularly perturbed dynamical systems on the plane. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 157-176. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a2/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 918 pp. | MR | Zbl

[2] Chezari L. L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 477 pp.

[3] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1966, 248 pp.

[4] Landa P. S., Nelineinye kolebaniya i volny, Librokom, M., 2010, 552 pp.

[5] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, PMM, 11:3 (1947), 313–328 | MR | Zbl

[6] Gotsulenko V. V., “Relaksatsionnye periodicheskie avtokolebaniya, opredelyaemye neyavno singulyarno vozmuschennymi sistemami obyknovennykh differentsialnykh uravnenii”, Tr. 4-oi Mezhdunar. nauch. konf. molodykh uchenykh po differentsialnym uravneniyam i ikh prilozheniyam, posvyaschennaya Ya. B. Lopatinskomu (15–17 noyabrya 2012 goda, Donetskii natsionalnyi universitet), 36–37 | MR

[7] Gotsulenko V. V., Gotsulenko V. N., “Analiz dinamicheskikh rezhimov v zamknutoi gidrosisteme s vozdushnoi podushkoi na vkhode v lopastnoi nasos”, Matem. modelirovanie, 2012, no. 2(27), 65–70 | MR

[8] Gotsulenko V. V., Gotsulenko V. N., “Self-oscillations (surging) of a single-stage centrifugal pump in the cavitation regime and their damping”, J. Eng. Phys. Thermophys., 86:4 (2013), 913–920 | DOI

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[10] Utkin V. I., Skolzyaschie rezhimy v zadachakh optimizatsii i upravleniya, Nauka, M., 1974, 272 pp.

[11] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 224 pp. | Zbl

[12] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, Nauka, M., 1972, 472 pp. | MR

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[14] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 560 pp.

[15] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, Nauka, M., 1990, 312 pp. | MR