Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 149-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work we analyze the statistics of a set that is obtained by calculating a stroboscopic section of phase trajectories in a harmonically driven van der Pol oscillator. It is shown that this set is similar to a linear shift on a circle with an irrational rotation number, which is defined as the detuning between the external and natural frequencies. The dependence of minimal return times on the size $\varepsilon$ of the return interval is studied experimentally for the golden ratio. Furthermore, it is also found that in this case, the value of the Afraimovich–Pesin dimension is $\alpha_c=1$.
Keywords: Poincaré recurrence, Afraimovich–Pesin dimension, Fibonacci stairs, circle map, van der Pol oscillator.
@article{ND_2014_10_2_a1,
     author = {Nadezhda I. Semenova and Vadim S. Anishchenko},
     title = {Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der {Pol} oscillator},
     journal = {Russian journal of nonlinear dynamics},
     pages = {149--156},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/}
}
TY  - JOUR
AU  - Nadezhda I. Semenova
AU  - Vadim S. Anishchenko
TI  - Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 149
EP  - 156
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/
LA  - ru
ID  - ND_2014_10_2_a1
ER  - 
%0 Journal Article
%A Nadezhda I. Semenova
%A Vadim S. Anishchenko
%T Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator
%J Russian journal of nonlinear dynamics
%D 2014
%P 149-156
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/
%G ru
%F ND_2014_10_2_a1
Nadezhda I. Semenova; Vadim S. Anishchenko. Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 149-156. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/

[1] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, OGIZ, M., 1947, 456 pp.

[2] Puankare A., Izbrannye trudy, V 3-kh tt., v. 2, Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, M., 1972, 360 pp. | MR

[3] Hirata M., Saussol B., Vaienti S., “Statistics of return times: A general framework and new applications”, Comm. Math. Phys., 206:1 (1999), 33–55 | DOI | MR | Zbl

[4] Afraimovich V., Ugalde E., Urias Kh., Fraktalnye razmernosti dlya vremen vozvrascheniya Puankare, Institut kompyuternykh issledovanii, M.–Izhevsk, 2011, 290 pp.

[5] Afraimovich V., “Pesin's dimension for Poincaré recurrences”, Chaos, 7:1 (1997), 12–20 | DOI | MR | Zbl

[6] Semenova N. I., Vadivasova T. E., Anishchenko V. S., “Statistical properties of Poincaré recurrences and Afraimovich–Pesin dimension for the circle map”, Commun. Nonlinear Sci. Numer. Simul., 2014 (to appear)

[7] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001, 266 pp.