Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 149-156
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present work we analyze the statistics of a set that is obtained by calculating a stroboscopic section of phase trajectories in a harmonically driven van der Pol oscillator. It is shown that this set is similar to a linear shift on a circle with an irrational rotation number, which is defined as the detuning between the external and natural frequencies. The dependence of minimal return times on the size $\varepsilon$ of the return interval is studied experimentally for the golden ratio. Furthermore, it is also found that in this case, the value of the Afraimovich–Pesin dimension is $\alpha_c=1$.
Keywords:
Poincaré recurrence, Afraimovich–Pesin dimension, Fibonacci stairs, circle map, van der Pol oscillator.
@article{ND_2014_10_2_a1,
author = {Nadezhda I. Semenova and Vadim S. Anishchenko},
title = {Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der {Pol} oscillator},
journal = {Russian journal of nonlinear dynamics},
pages = {149--156},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/}
}
TY - JOUR AU - Nadezhda I. Semenova AU - Vadim S. Anishchenko TI - Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator JO - Russian journal of nonlinear dynamics PY - 2014 SP - 149 EP - 156 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/ LA - ru ID - ND_2014_10_2_a1 ER -
%0 Journal Article %A Nadezhda I. Semenova %A Vadim S. Anishchenko %T Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator %J Russian journal of nonlinear dynamics %D 2014 %P 149-156 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/ %G ru %F ND_2014_10_2_a1
Nadezhda I. Semenova; Vadim S. Anishchenko. Poincar\'e recurrences in a stroboscopic section of a nonautonomous van der Pol oscillator. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 2, pp. 149-156. http://geodesic.mathdoc.fr/item/ND_2014_10_2_a1/