Focus-focus singularities in classical mechanics
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the local singularities of integrable Hamiltonian systems with two degrees of freedom are studied. The topological obstruction to the existence of a focus-focus singularity with given complexity is found. It is shown that only simple focus-focus singularities can appear in a typical mechanical system. Model examples of mechanical systems with complicated focus-focus singularity are given.
Keywords: integrable hamiltonian systems, focus-focus singularities, obstruction to the existence of singularities.
@article{ND_2014_10_1_a6,
     author = {Gleb E. Smirnov},
     title = {Focus-focus singularities in classical mechanics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a6/}
}
TY  - JOUR
AU  - Gleb E. Smirnov
TI  - Focus-focus singularities in classical mechanics
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 101
EP  - 112
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a6/
LA  - ru
ID  - ND_2014_10_1_a6
ER  - 
%0 Journal Article
%A Gleb E. Smirnov
%T Focus-focus singularities in classical mechanics
%J Russian journal of nonlinear dynamics
%D 2014
%P 101-112
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a6/
%G ru
%F ND_2014_10_1_a6
Gleb E. Smirnov. Focus-focus singularities in classical mechanics. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a6/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2003, 416 pp.

[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl

[3] Bolsinov A. V., Kazakov A. O., Kilin A. A., “Topologicheskaya monodromiya v negolonomnykh sistemakh”, Nelineinaya dinamika, 9:2 (2013), 203–227

[4] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 pp. ; 448 с. | MR

[5] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989, 336 pp. | MR

[6] Ivochkin M. Yu., “Topologicheskii analiz dvizheniya ellipsoida po gladkoi ploskosti”, Matem. sb., 199:6 (2008), 85–104 | DOI | MR | Zbl

[7] Izosimov A. M., “Gladkie invarianty osobennostei tipa fokus-fokus”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 2011, no. 4, 59–61 | MR

[8] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb{R}^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek, 1”, Matem. sb., 181:12 (1992), 141–176 | MR

[9] Makdaff D., Salamon D., Vvedenie v simplekticheskuyu topologiyu, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2012, 568 pp.

[10] Matveev V. S., “Integriruemye gamiltonovy sistemy s dvumya stepenyami svobody. Topologicheskoe stroenie nasyschennykh okrestnostei tochek tipa fokus-fokus i sedlo-sedlo”, Matem. sb., 187:4 (1996), 29–58 | DOI | MR | Zbl

[11] Morozov P. V., “Liuvilleva klassifikatsiya integriruemykh sistem sluchaya Klebsha”, Matem. sb., 193:10 (2002), 113–138 | DOI | Zbl

[12] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravnenii Kirkhgofa dlya svobodnogo tverdogo tela v zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LShM), 1”, Funkts. analiz i ego pril., 15:3 (1981), 54–66 | MR

[13] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl

[14] Oshemkov A. A., “Klassifikatsiya giperbolicheskikh osobennostei ranga nul integriruemykh gamiltonovykh sistem”, Matem. sb., 201:8 (2010), 63–102 | DOI | MR | Zbl

[15] Pogosyan T. I., “Kriticheskie integralnye poverkhnosti v zadache Klebsha”, MTT, 1984, no. 16, 19–24 | MR | Zbl

[16] Smeil S., “Topologiya i mekhanika”, UMN, 27:2(164) (1972), 77–134 | MR

[17] Kharlamov M. P., “Kharakteristicheskii klass rassloeniya i suschestvovanie globalnoi funktsii Rausa”, Funkts. analiz i ego pril., 11:1 (1977), 89–90 | MR | Zbl

[18] Kharlamov M. P., “O nekotorykh primeneniyakh differentsialnoi geometrii k teorii mekhanicheskikh sistem”, MTT, 1979, no. 11, 37–49 | MR | Zbl

[19] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, LGU, L., 1988, 200 pp. | MR

[20] Bolsinov A. V., Oshemkov A. A., “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, eds. A. V. Bolsinov, A. T. Fomenko, A. A. Oshemkov, Camb. Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl

[21] Cushman R., Bates L., Global aspects of classical integrable systems, Birkhäuser, Basel, 1997, 435 pp. | MR | Zbl

[22] Efstathiou K., Metamorphoses of Hamiltonian systems with symmetries, Lect. Notes in Math., 1864, Springer, Berlin, 2005, 149 pp. | MR | Zbl

[23] Eliasson L. H., “Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl

[24] Hatcher A., Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002, 550 pp. | MR | Zbl

[25] Ito H., “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64:3 (1989), 412–461 | DOI | MR | Zbl

[26] Leung N. C., Symington M., “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8:2 (2010), 143–187 | DOI | MR | Zbl

[27] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 67–146 | MR

[28] Nguyen T. Z., “Symplectic topology of integrable Hamiltonian systems. 1: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl

[29] Nguyen T. Z., “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl

[30] Nguyen T. Z., “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl

[31] Vey J., “Sur certains systèmes dynamiques séparables”, Amer. J. Math., 100:3 (1978), 591–614 | DOI | MR | Zbl

[32] Vu Ngoc S., “On semi-global invariants for focus-focus singularities”, Topology, 42:2 (2002), 365–380 | DOI | MR