Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 35-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper sets out the main elements of the theory of matrix functional substitutions to the construction of integrable finite-dimensional dynamical systems and the application of this theory to the integration of the Landau–Lifshitz equation for a homogeneous magnetic field in the external variable fields. Developed a general scheme for constructing solutions and is an example of the construction of the exact solution for a circularly polarized field.
Keywords: integrable finite-dimensional dynamical systems, matrix functional substitutions, Landau–Lifshitz equations.
@article{ND_2014_10_1_a2,
     author = {Victor M. Zhuravlev},
     title = {Matrix functional substitutions for integrable dynamical systems and the {Landau--Lifshitz} equations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/}
}
TY  - JOUR
AU  - Victor M. Zhuravlev
TI  - Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 35
EP  - 48
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/
LA  - ru
ID  - ND_2014_10_1_a2
ER  - 
%0 Journal Article
%A Victor M. Zhuravlev
%T Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
%J Russian journal of nonlinear dynamics
%D 2014
%P 35-48
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/
%G ru
%F ND_2014_10_1_a2
Victor M. Zhuravlev. Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov i metod obratnoi zadachi rasseyaniya, Nauka, M., 1980, 319 pp. | MR

[2] Dodd R., Eilbek Dzh., Gibbon Dzh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp. | MR

[3] Zhuravlev V. M., Nikitin A. V., “Novyi podkhod k postroeniyu nelineinykh evolyutsionnykh uravnenii, linearizuemykh s pomoschyu podstanovok tipa Koula–Khopfa”, Nelineinyi mir, 5:9 (2007), 603–611

[4] Zhuravlev V. M., “Metod obobschennykh podstanovok Koula–Khopfa i novye primery linearizuemykh nelineinykh evolyutsionnykh uravnenii”, TMF, 158:1 (2009), 58–71 | DOI | MR | Zbl

[5] Zhiber A. V., Murtazina R. D., Khabibullin I. T., Shabat A. B., “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, NITs «RKhD», Izhevsk, 2001, 384 pp. | MR | Zbl

[7] Zhuravlev V. M., Obrubov K. S., “Metod obobschennykh podstanovok Koula–Khopfa v teorii konechnomernykh nelineinykh dinamicheskikh sistem”, Vestn. Sam. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 2011, no. 1(22), 83–89 | DOI | MR

[8] Gurevich A. G., Magnitnyi rezonans v ferritakh i antiferromagnetikakh, Nauka, M., 1973, 592 pp.

[9] Gurevich A. G., Melkov G. A., Magnitnye kolebaniya i volny, Fizmatlit, M., 1973, 464 pp.

[10] Sokhotskii G. V., “Esche raz ob uravnenii Landau–Lifshitsa”, UFN, 144:4 (1984), 681–686 | DOI

[11] Shamsutdinov M. A., Kalyakin L. A., Kharisov A. T., “Avtorezonans v ferromagnitnoi plenke”, ZhTF, 80:6 (2010), 106–111

[12] Sementsov D. I., Shutyi A. M., “Nelineinaya regulyarnaya dinamika i stokhasticheskaya dinamika v tonkoplenochnykh strukturakh”, UFN, 177:8 (2007), 831–857 | DOI