Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 35-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper sets out the main elements of the theory of matrix functional substitutions to the construction of integrable finite-dimensional dynamical systems and the application of this theory to the integration of the Landau–Lifshitz equation for a homogeneous magnetic field in the external variable fields. Developed a general scheme for constructing solutions and is an example of the construction of the exact solution for a circularly polarized field.
Keywords: integrable finite-dimensional dynamical systems, matrix functional substitutions, Landau–Lifshitz equations.
@article{ND_2014_10_1_a2,
     author = {Victor M. Zhuravlev},
     title = {Matrix functional substitutions for integrable dynamical systems and the {Landau--Lifshitz} equations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/}
}
TY  - JOUR
AU  - Victor M. Zhuravlev
TI  - Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 35
EP  - 48
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/
LA  - ru
ID  - ND_2014_10_1_a2
ER  - 
%0 Journal Article
%A Victor M. Zhuravlev
%T Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations
%J Russian journal of nonlinear dynamics
%D 2014
%P 35-48
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/
%G ru
%F ND_2014_10_1_a2
Victor M. Zhuravlev. Matrix functional substitutions for integrable dynamical systems and the Landau--Lifshitz equations. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a2/