Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2014_10_1_a1, author = {Vyacheslav Z. Grines and Yulia A. Levchenko and Olga V. Pochinka}, title = {On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers}, journal = {Russian journal of nonlinear dynamics}, pages = {17--33}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/} }
TY - JOUR AU - Vyacheslav Z. Grines AU - Yulia A. Levchenko AU - Olga V. Pochinka TI - On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers JO - Russian journal of nonlinear dynamics PY - 2014 SP - 17 EP - 33 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/ LA - ru ID - ND_2014_10_1_a1 ER -
%0 Journal Article %A Vyacheslav Z. Grines %A Yulia A. Levchenko %A Olga V. Pochinka %T On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers %J Russian journal of nonlinear dynamics %D 2014 %P 17-33 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/ %G ru %F ND_2014_10_1_a1
Vyacheslav Z. Grines; Yulia A. Levchenko; Olga V. Pochinka. On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/
[1] Afraimovich V. S., Krakhnov A. D., “O nadstroikakh nad U-diffeomorfizmami tora”, Sb. nauchn. st., Metody kachestvennoi teorii differentsialnykh uravnenii, 1, eds. E. A. Leontovich-Andronova i dr., GGU, Gorkii, 1975, 34–40
[2] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tp. Pyatoi mezhdunapodnoi konfepentsii po nelineinym kolebaniyam, v. 2, Kachestvennye metody, In-t matem. AN USSP, Kiev, 1970, 39–44
[3] Bothe H. G., “The ambient structure of expanding attractors. 2: Solenoids in $3$-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl
[4] Bowen R., “Periodic points and measures for Axiom $A$ diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377–397 | MR | Zbl
[5] Brown A., “Nonexpanding attractors: conjugacy to algebraic models and classification in $3$-manifolds”, J. Mod. Dyn., 4:3 (2010), 517–548 | DOI | MR | Zbl
[6] Franks J., “Anosov diffeomorphisms”, Global Analysis (Berkeley, CA, 1968), Proc. Symp. in Pure Math., 14, AMS, Providence, RI, 1970, 61–93 | DOI | MR
[7] Ghys E., Sergiescu V., “Stabilite et conjugaison differentiable pour certains feuilletages”, Topology, 19:2 (1980), 179–197 | DOI | MR | Zbl
[8] Grines V. Z., Medvedev V. S., Zhuzhoma E. V., “O poverkhnostnykh attraktorakh i repellerakh na $3$-mnogoobraziyakh”, Matem. zametki, 78:6 (2005), 813–826 | DOI | MR | Zbl
[9] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl
[10] Grines V. Z., Medvedev V. S., Levchenko Yu. A., “O strukture $3$-mnogoobraziya, dopuskayuschego $A$-diffeomorfizm s dvumernym poverkhnostnym nebluzhdayuschim mnozhestvom”, Tr. SVMO, 12:2 (2010), 7–12 | Zbl
[11] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl
[12] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, RKhD, M.–Izhevsk, 2011, 424 pp.
[13] Rodriguez Hertz F., Rodriguez Hertz M. A., Ures R., “Tori with hyperbolic dynamics in $3$-manifolds”, J. Mod. Dyn., 5:1 (2011), 185–202 | DOI | MR | Zbl
[14] Kaplan J. L., Mallet-Paret J., Yorke J. A., “The Lyapunov dimension of a nowhere differentiable attracting torus”, Ergodic Theory Dynam. Systems, 4:2 (1984), 261–281 | DOI | MR | Zbl
[15] Ma J., Yu B., “Genus two Smale–Williams solenoid attractors in $3$-manifolds”, J. Knot Theory Ramifications, 20:6 (2011), 909–926 | DOI | MR | Zbl
[16] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. GGU, 12 (1939), 215–229
[17] Mañé R., “A proof of the $C^1$ stability conjecture”, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161–210 | Zbl
[18] Medvedev V., Zhuzhoma E., “On the existence of codimension-one nonorientable expanding attractors”, J. Dyn. Control Syst., 11:3 (2005), 405–411 | DOI | MR | Zbl
[19] Munkres J., “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl
[20] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomopfizmov S. Smeila”, Matem. sb., 84:2 (1971), 301–312 | MR | Zbl
[21] Plykin R. V., “O strukture tsentralizatorov anosovskikh diffeomorfizmov tora”, UMN, 53:6 (1998), 259–260 | DOI | MR | Zbl
[22] Robbin J., “A structural stability theorem”, Ann. of Math. (2), 94:2 (1971), 447–493 | DOI | MR | Zbl
[23] Robinson C., “Structural stability of $C^1$ diffeomorphisms”, J. Differential Equations, 22:1 (1976), 28–73 | DOI | MR | Zbl
[24] Rolfsen D., Knots and links, Mathematics lecture series, 7, Publish or Perish, Houston, TX, 1990, 439 pp. | MR | Zbl
[25] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Смейл С., “Дифференцируемые динамические системы”, УМН, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR
[26] Smale S., “Stability and isotopy in discrete dynamical systems”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), ed. M. M. Peixoto, Acad. Press, New York, 1973, 527–530 | MR
[27] Williams R., “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 43, 169–203 | DOI | MR