On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers
Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 17-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of diffeomorphisms on 3-manifolds which satisfy S. Smale's axiom $A$ such that their nonwandering set consists of two-dimensional surface basic sets. Interrelation between dynamics of such diffeomorphism and topology of the ambient manifold is studied. Also we establish that each considered diffeomorphism is $\Omega$-conjugated with a model diffeomorphism of mapping torus. Under certain assumptions on asymptotic properties of two-dimensional invariant manifolds of points from the basic sets, we obtain necessary and sufficient conditions of topological conjugacy of structurally stable diffeomorphisms from the considered class.
Keywords: diffeomorphism, basic set, topological conjugacy, attractor, repeller.
@article{ND_2014_10_1_a1,
     author = {Vyacheslav Z. Grines and Yulia A. Levchenko and Olga V. Pochinka},
     title = {On  topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers},
     journal = {Russian journal of nonlinear dynamics},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/}
}
TY  - JOUR
AU  - Vyacheslav Z. Grines
AU  - Yulia A. Levchenko
AU  - Olga V. Pochinka
TI  - On  topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers
JO  - Russian journal of nonlinear dynamics
PY  - 2014
SP  - 17
EP  - 33
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/
LA  - ru
ID  - ND_2014_10_1_a1
ER  - 
%0 Journal Article
%A Vyacheslav Z. Grines
%A Yulia A. Levchenko
%A Olga V. Pochinka
%T On  topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers
%J Russian journal of nonlinear dynamics
%D 2014
%P 17-33
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/
%G ru
%F ND_2014_10_1_a1
Vyacheslav Z. Grines; Yulia A. Levchenko; Olga V. Pochinka. On  topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers. Russian journal of nonlinear dynamics, Tome 10 (2014) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/ND_2014_10_1_a1/

[1] Afraimovich V. S., Krakhnov A. D., “O nadstroikakh nad U-diffeomorfizmami tora”, Sb. nauchn. st., Metody kachestvennoi teorii differentsialnykh uravnenii, 1, eds. E. A. Leontovich-Andronova i dr., GGU, Gorkii, 1975, 34–40

[2] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tp. Pyatoi mezhdunapodnoi konfepentsii po nelineinym kolebaniyam, v. 2, Kachestvennye metody, In-t matem. AN USSP, Kiev, 1970, 39–44

[3] Bothe H. G., “The ambient structure of expanding attractors. 2: Solenoids in $3$-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl

[4] Bowen R., “Periodic points and measures for Axiom $A$ diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377–397 | MR | Zbl

[5] Brown A., “Nonexpanding attractors: conjugacy to algebraic models and classification in $3$-manifolds”, J. Mod. Dyn., 4:3 (2010), 517–548 | DOI | MR | Zbl

[6] Franks J., “Anosov diffeomorphisms”, Global Analysis (Berkeley, CA, 1968), Proc. Symp. in Pure Math., 14, AMS, Providence, RI, 1970, 61–93 | DOI | MR

[7] Ghys E., Sergiescu V., “Stabilite et conjugaison differentiable pour certains feuilletages”, Topology, 19:2 (1980), 179–197 | DOI | MR | Zbl

[8] Grines V. Z., Medvedev V. S., Zhuzhoma E. V., “O poverkhnostnykh attraktorakh i repellerakh na $3$-mnogoobraziyakh”, Matem. zametki, 78:6 (2005), 813–826 | DOI | MR | Zbl

[9] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl

[10] Grines V. Z., Medvedev V. S., Levchenko Yu. A., “O strukture $3$-mnogoobraziya, dopuskayuschego $A$-diffeomorfizm s dvumernym poverkhnostnym nebluzhdayuschim mnozhestvom”, Tr. SVMO, 12:2 (2010), 7–12 | Zbl

[11] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl

[12] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, RKhD, M.–Izhevsk, 2011, 424 pp.

[13] Rodriguez Hertz F., Rodriguez Hertz M. A., Ures R., “Tori with hyperbolic dynamics in $3$-manifolds”, J. Mod. Dyn., 5:1 (2011), 185–202 | DOI | MR | Zbl

[14] Kaplan J. L., Mallet-Paret J., Yorke J. A., “The Lyapunov dimension of a nowhere differentiable attracting torus”, Ergodic Theory Dynam. Systems, 4:2 (1984), 261–281 | DOI | MR | Zbl

[15] Ma J., Yu B., “Genus two Smale–Williams solenoid attractors in $3$-manifolds”, J. Knot Theory Ramifications, 20:6 (2011), 909–926 | DOI | MR | Zbl

[16] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. GGU, 12 (1939), 215–229

[17] Mañé R., “A proof of the $C^1$ stability conjecture”, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161–210 | Zbl

[18] Medvedev V., Zhuzhoma E., “On the existence of codimension-one nonorientable expanding attractors”, J. Dyn. Control Syst., 11:3 (2005), 405–411 | DOI | MR | Zbl

[19] Munkres J., “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl

[20] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomopfizmov S. Smeila”, Matem. sb., 84:2 (1971), 301–312 | MR | Zbl

[21] Plykin R. V., “O strukture tsentralizatorov anosovskikh diffeomorfizmov tora”, UMN, 53:6 (1998), 259–260 | DOI | MR | Zbl

[22] Robbin J., “A structural stability theorem”, Ann. of Math. (2), 94:2 (1971), 447–493 | DOI | MR | Zbl

[23] Robinson C., “Structural stability of $C^1$ diffeomorphisms”, J. Differential Equations, 22:1 (1976), 28–73 | DOI | MR | Zbl

[24] Rolfsen D., Knots and links, Mathematics lecture series, 7, Publish or Perish, Houston, TX, 1990, 439 pp. | MR | Zbl

[25] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Смейл С., “Дифференцируемые динамические системы”, УМН, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR

[26] Smale S., “Stability and isotopy in discrete dynamical systems”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), ed. M. M. Peixoto, Acad. Press, New York, 1973, 527–530 | MR

[27] Williams R., “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 43, 169–203 | DOI | MR