Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_4_a8, author = {Alexey V. Borisov and Alexander A. Kilin and Ivan S. Mamaev}, title = {The problem of drift and recurrence for the rolling {Chaplygin} ball}, journal = {Russian journal of nonlinear dynamics}, pages = {721--754}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/} }
TY - JOUR AU - Alexey V. Borisov AU - Alexander A. Kilin AU - Ivan S. Mamaev TI - The problem of drift and recurrence for the rolling Chaplygin ball JO - Russian journal of nonlinear dynamics PY - 2013 SP - 721 EP - 754 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/ LA - ru ID - ND_2013_9_4_a8 ER -
%0 Journal Article %A Alexey V. Borisov %A Alexander A. Kilin %A Ivan S. Mamaev %T The problem of drift and recurrence for the rolling Chaplygin ball %J Russian journal of nonlinear dynamics %D 2013 %P 721-754 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/ %G ru %F ND_2013_9_4_a8
Alexey V. Borisov; Alexander A. Kilin; Ivan S. Mamaev. The problem of drift and recurrence for the rolling Chaplygin ball. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 721-754. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/
[1] Bobylev D. K., “O share s giroskopom vnutri, katyaschemsya po gorizontalnoi ploskosti bez skolzheniya”, Matem. sb., 16:3 (1882), 544–581
[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl
[3] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307
[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov, II”, Nelineinaya dinamika, 9:1 (2013), 59–76 | MR
[5] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl
[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR
[7] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[8] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202
[9] Zhukovskii N. E., “O giroskopicheskom share D. K. Bobyleva”, Tr. otd. fiz. nauk Mosk. ob-va lyubitelei estestvoznaniya, antropologii i etnografii, 6:1 (1893), 11–17; Жуковский Н. Е., “О гироскопическом шаре Д. К. Бобылева”, Собр. соч., т. 1, Гостехиздат, М.–Л., 1948, 275–289
[10] Kozlov V. V., “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, PMM, 39:1 (1975), 24–29 | MR | Zbl
[11] Kozlov V. V., “O kachestvennom analize dvizheniya tverdogo tela v sluchae Goryacheva–Chaplygina”, PMM, 41:2 (1977), 225–233 | MR | Zbl
[12] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[13] Kozlov V. V., Kolesnikov N. N., “O teoremakh dinamiki”, PMM, 42:1 (1987), 28–33
[14] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000, 256 pp.
[15] Kozlov V. V., “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, Dinamicheskie sistemy i optimizatsiya, Sb. st.: K 70-letiyu so dnya rozhdeniya akademika D. V. Anosova, Tr. MIAN im. V. A. Steklova, 256, ed. E. F. Mischenko, Nauka, M., 2007, 201–218 | MR | Zbl
[16] Kozlov V. V., “O povedenii tsiklicheskikh peremennykh v integriruemykh sistemakh”, PMM, 77:2 (2013), 179–190
[17] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl
[18] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65
[19] Puankare A., Teoriya veroyatnostei, Red. zhurnala «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 1999, 276 pp.; Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912, 333 pp. | Zbl
[20] Tsyganov A. V., “O share Chaplygina v absolyutnom prostranstve”, Nelineinaya dinamika, 9:4 (2013), 711–719
[21] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101 | Zbl
[22] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, M.–L., 1949, 9–27 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 57–75 | Zbl
[23] Bloch A. M., Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer, New York, 2003, 483 pp. | DOI | MR
[24] Bohl P., “Über ein in der Theorie der säkularen Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–203
[25] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR
[26] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[27] Bruns K., “Bemerkungen zur Theorie der allgemeinen Störungen”, Astronom. Nachr., 109:2606 (1884), 216–222 | DOI | Zbl
[28] Charlier C. V. L., Die Mechanik des Himmels: Vorlesungen, Gruyter, Berlin, 1927, 488 pp. ; Шарлье К., Небесная механика, Наука, М., 1966, 628 с. | Zbl | MR
[29] Duistermaat J. J., Chaplygin's sphere, 1 Sep. 2004, arXiv: math/0409019v1
[30] Fedorov Yu. N., Jovanović B., “Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces”, J. Nonlinear Sci., 14:4 (2004), 341–381 | DOI | MR | Zbl
[31] Gyldén H., “Om sannolikheten af divergens hos hittills brukliga metoder att analytiskt framställa planetariska störingar”, ÖfVA, 45:2 (1888), 77–87
[32] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl
[33] Saito T., “On the measure-preserving flow on the torus”, J. Math. Soc. Japan, 3:2 (1951), 279–284 | DOI | MR | Zbl
[34] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl
[35] Weyl H., “Mean motion”, Amer. J. Math., 60 (1933), 889–896 ; Вейль Г., “Среднее движение”, УМН, 31:4 (1976), 213–219 | DOI | MR | MR
[36] Wintner A., The analytical foundations of celestial mechanics, Princeton University Press, Princeton, 1941, 448 pp. | MR