The problem of drift and recurrence for the rolling Chaplygin ball
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 721-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the motion of the point of contact (absolute dynamics) in the integrable problem of the Chaplygin ball rolling on a plane. Although the velocity of the point of contact is a given vector function of variables of a reduced system, it is impossible to apply standard methods of the theory of integrable Hamiltonian systems due to the absence of an appropriate conformally Hamiltonian representation for an unreduced system. For a complete analysis we apply the standard analytical approach, due to Bohl and Weyl, and develop topological methods of investigation. In this way we obtain conditions for boundedness and unboundedness of the trajectories of the contact point.
Keywords: nonholonomic constraint, absolute dynamics, bifurcation diagram, drift, resonance
Mots-clés : bifurcation complex, invariant torus.
@article{ND_2013_9_4_a8,
     author = {Alexey V. Borisov and Alexander A. Kilin and Ivan S. Mamaev},
     title = {The problem of drift and recurrence for the rolling {Chaplygin} ball},
     journal = {Russian journal of nonlinear dynamics},
     pages = {721--754},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Alexander A. Kilin
AU  - Ivan S. Mamaev
TI  - The problem of drift and recurrence for the rolling Chaplygin ball
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 721
EP  - 754
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/
LA  - ru
ID  - ND_2013_9_4_a8
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Alexander A. Kilin
%A Ivan S. Mamaev
%T The problem of drift and recurrence for the rolling Chaplygin ball
%J Russian journal of nonlinear dynamics
%D 2013
%P 721-754
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/
%G ru
%F ND_2013_9_4_a8
Alexey V. Borisov; Alexander A. Kilin; Ivan S. Mamaev. The problem of drift and recurrence for the rolling Chaplygin ball. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 721-754. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a8/

[1] Bobylev D. K., “O share s giroskopom vnutri, katyaschemsya po gorizontalnoi ploskosti bez skolzheniya”, Matem. sb., 16:3 (1882), 544–581

[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov, II”, Nelineinaya dinamika, 9:1 (2013), 59–76 | MR

[5] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[7] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[8] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[9] Zhukovskii N. E., “O giroskopicheskom share D. K. Bobyleva”, Tr. otd. fiz. nauk Mosk. ob-va lyubitelei estestvoznaniya, antropologii i etnografii, 6:1 (1893), 11–17; Жуковский Н. Е., “О гироскопическом шаре Д. К. Бобылева”, Собр. соч., т. 1, Гостехиздат, М.–Л., 1948, 275–289

[10] Kozlov V. V., “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, PMM, 39:1 (1975), 24–29 | MR | Zbl

[11] Kozlov V. V., “O kachestvennom analize dvizheniya tverdogo tela v sluchae Goryacheva–Chaplygina”, PMM, 41:2 (1977), 225–233 | MR | Zbl

[12] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[13] Kozlov V. V., Kolesnikov N. N., “O teoremakh dinamiki”, PMM, 42:1 (1987), 28–33

[14] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000, 256 pp.

[15] Kozlov V. V., “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, Dinamicheskie sistemy i optimizatsiya, Sb. st.: K 70-letiyu so dnya rozhdeniya akademika D. V. Anosova, Tr. MIAN im. V. A. Steklova, 256, ed. E. F. Mischenko, Nauka, M., 2007, 201–218 | MR | Zbl

[16] Kozlov V. V., “O povedenii tsiklicheskikh peremennykh v integriruemykh sistemakh”, PMM, 77:2 (2013), 179–190

[17] Kolmogorov A. N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[18] Markeev A. P., “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, MTT, 21:1 (1986), 64–65

[19] Puankare A., Teoriya veroyatnostei, Red. zhurnala «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 1999, 276 pp.; Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912, 333 pp. | Zbl

[20] Tsyganov A. V., “O share Chaplygina v absolyutnom prostranstve”, Nelineinaya dinamika, 9:4 (2013), 711–719

[21] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101 | Zbl

[22] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, M.–L., 1949, 9–27 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 57–75 | Zbl

[23] Bloch A. M., Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer, New York, 2003, 483 pp. | DOI | MR

[24] Bohl P., “Über ein in der Theorie der säkularen Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–203

[25] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[26] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[27] Bruns K., “Bemerkungen zur Theorie der allgemeinen Störungen”, Astronom. Nachr., 109:2606 (1884), 216–222 | DOI | Zbl

[28] Charlier C. V. L., Die Mechanik des Himmels: Vorlesungen, Gruyter, Berlin, 1927, 488 pp. ; Шарлье К., Небесная механика, Наука, М., 1966, 628 с. | Zbl | MR

[29] Duistermaat J. J., Chaplygin's sphere, 1 Sep. 2004, arXiv: math/0409019v1

[30] Fedorov Yu. N., Jovanović B., “Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces”, J. Nonlinear Sci., 14:4 (2004), 341–381 | DOI | MR | Zbl

[31] Gyldén H., “Om sannolikheten af divergens hos hittills brukliga metoder att analytiskt framställa planetariska störingar”, ÖfVA, 45:2 (1888), 77–87

[32] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[33] Saito T., “On the measure-preserving flow on the torus”, J. Math. Soc. Japan, 3:2 (1951), 279–284 | DOI | MR | Zbl

[34] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl

[35] Weyl H., “Mean motion”, Amer. J. Math., 60 (1933), 889–896 ; Вейль Г., “Среднее движение”, УМН, 31:4 (1976), 213–219 | DOI | MR | MR

[36] Wintner A., The analytical foundations of celestial mechanics, Princeton University Press, Princeton, 1941, 448 pp. | MR