On the absolute dynamics of the Chaplygin ball
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 711-719.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an application of the Lie integrability theorem to the nonholonomic system describing the rolling of a dynamically balanced ball on horizontal absolutely rough table without slipping or sliding.
Keywords: nonholonomic mechanics, integrable systems, Poisson geometry.
@article{ND_2013_9_4_a7,
     author = {Andrey V. Tsiganov},
     title = {On the absolute dynamics of the {Chaplygin} ball},
     journal = {Russian journal of nonlinear dynamics},
     pages = {711--719},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a7/}
}
TY  - JOUR
AU  - Andrey V. Tsiganov
TI  - On the absolute dynamics of the Chaplygin ball
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 711
EP  - 719
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a7/
LA  - ru
ID  - ND_2013_9_4_a7
ER  - 
%0 Journal Article
%A Andrey V. Tsiganov
%T On the absolute dynamics of the Chaplygin ball
%J Russian journal of nonlinear dynamics
%D 2013
%P 711-719
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a7/
%G ru
%F ND_2013_9_4_a7
Andrey V. Tsiganov. On the absolute dynamics of the Chaplygin ball. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 711-719. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a7/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002, 416 pp. | Zbl

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR

[3] Bizayev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46 (2013), 085202, 11 pp. | DOI | MR

[4] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl

[5] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101 | Zbl

[6] Kilin A. A., “Dinamika shara Chaplygina v absolyutnom prostranstve”, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., eds. A. V. Borisov, I. S. Mamaev, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 76–98

[7] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 ; Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 191–176 | MR | DOI | MR

[8] Kozlov V. V., “Teorema Eilera–Yakobi–Li ob integriruemosti”, Nelineinaya dinamika, 9:2 (2013), 229–245

[9] Olver P. J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, 2nd ed., Springer, New York, 1993, 513 pp. | DOI | MR | Zbl

[10] Tsiganov A. V., “Integrable Euler top and nonholonomic Chaplygin ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl

[11] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17:5 (2012), 439–450 | DOI | MR | Zbl

[12] Tsiganov A. V., “On generalized nonholonomic Chaplygin sphere problem”, Int. J. Geom. Methods Mod. Phys., 10:6 (2013), 1320008, 8 pp. | DOI | MR | Zbl

[13] Tsiganov A. V., “On the nonholonomic Stübler model”, Nonlinear Dynamics Mobile Robotics, 1 (2013), 87–97