Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_4_a1, author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev}, title = {Geometrization of the {Chaplygin} reducing-multiplier theorem}, journal = {Russian journal of nonlinear dynamics}, pages = {627--640}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/} }
TY - JOUR AU - A. V. Bolsinov AU - A. V. Borisov AU - I. S. Mamaev TI - Geometrization of the Chaplygin reducing-multiplier theorem JO - Russian journal of nonlinear dynamics PY - 2013 SP - 627 EP - 640 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/ LA - ru ID - ND_2013_9_4_a1 ER -
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. Geometrization of the Chaplygin reducing-multiplier theorem. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 627-640. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/
[1] Bizyaev I. A., Tsyganov A. V., “O sfere Rausa”, Nelineinaya dinamika, 8:3 (2012), 569–583 ; Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 1–11 | DOI | MR
[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl
[4] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[5] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202
[6] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478 | MR | Zbl
[7] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki. 1; 2”, Regul. Chaotic Dyn., 1:1 (1996), 15–37
[8] Veselov A. P., Veselova L. E., “Integriruemye negolonomnye sistemy na gruppakh Li”, Matem. zametki, 44:5 (1988), 604–619 | MR
[9] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, Sb. st., eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68
[10] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 ; Kozlov V. V., “On the integration theory of equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 191–176 | MR | DOI | MR
[11] Marikhin V. G., Sokolov V. V., “Pary kommutiruyuschikh gamiltonianov, kvadratichnykh po impulsam”, TMF, 149:2 (2006), 147–160 | DOI | MR | Zbl
[12] Moschuk N. K., “O privedenii uravnenii dvizheniya nekotorykh negolonomnykh sistem Chaplygina k forme uravnenii Lagranzha i Gamiltona”, PMM, 51:2 (1987), 223–229 | MR | Zbl
[13] Fedorov Yu. N., “O dvukh integriruemykh negolonomnykh sistemakh v klassicheskoi dinamike”, Vestn. MGU. Ser. Matem. Mekhan., 1989, no. 4, 38–41 | MR
[14] Tsyganov A. V., “O negolonomnykh sistemakh Veselovoi i Chaplygina”, Nelineinaya dinamika, 8:3 (2012), 541–547
[15] Tsyganov A. V., “Ob odnom semeistve konformno-gamiltonovykh sistem”, TMF, 173:2 (2012), 179–196 | DOI | Zbl
[16] Tsyganov A. V., “K zadache Chaplygina o kachenii shara”, Matem. zametki, 94:4 (2013), 637–640 | DOI
[17] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, M.–Л., 1948, 15–25; Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl
[18] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Sobr. soch., v. 1, OGIZ, M.–L., 1948, 76–101; Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl
[19] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR
[20] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[21] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl
[22] Cantrijin F., de Léon M., de Diego D., “On the geometry of generalized Chaplygin systems”, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323–351 | MR
[23] Fedorov Yu. N., Jovanović B., “Nongholonomic LR-Systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces”, J. Nonlinear Sci., 1 (2004), 341–381 | MR
[24] García-Naranjo L. C., Maciejewski A. J., Marrero J. C., Przybylska M., The inhomogeneous Suslov problem, 2013, arXiv: 1310.3868v1 [nlin.SI]
[25] Koiller J., “Reduction of some classical non-holonomic systems with symmetry”, Arch. Ration. Mech. Anal., 118 (1992), 113–148 | DOI | MR | Zbl
[26] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10:1 (2005), 59–70 | DOI | MR | Zbl
[27] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl