Geometrization of the Chaplygin reducing-multiplier theorem
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 627-640

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper develops the theory of the reducing multiplier for a special class of nonholonomic dynamical systems, when the resulting nonlinear Poisson structure is reduced to the Lie–Poisson bracket of the algebra $e(3)$. As an illustration, the Chaplygin ball rolling problem and the Veselova system are considered. In addition, an integrable gyrostatic generalization of the Veselova system is obtained.
Keywords: nonholonomic dynamical system, reducing multiplier, Hamiltonization, conformally Hamiltonian system, Chaplygin ball.
Mots-clés : Poisson bracket, Poisson structure
@article{ND_2013_9_4_a1,
     author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev},
     title = {Geometrization of the {Chaplygin} reducing-multiplier theorem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {627--640},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Geometrization of the Chaplygin reducing-multiplier theorem
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 627
EP  - 640
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/
LA  - ru
ID  - ND_2013_9_4_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. V. Borisov
%A I. S. Mamaev
%T Geometrization of the Chaplygin reducing-multiplier theorem
%J Russian journal of nonlinear dynamics
%D 2013
%P 627-640
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/
%G ru
%F ND_2013_9_4_a1
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. Geometrization of the Chaplygin reducing-multiplier theorem. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 627-640. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a1/