Reconstruction of time-delay systems under external periodic driving
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 613-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for the reconstruction of first-order time-delay systems under external periodic driving from their time series. The method takes into account the structure of the model equation of the system, while constructing the autoregressive model. The proposed method allows one to reconstruct the delay time, the parameter characterizing the system inertial properties, the nonlinear function, and the amplitude and frequency of the external periodic driving. The method efficiency is demonstrated in a numerical experiment by reconstructing a number of different nonautonomous time-delay systems.
Keywords: reconstruction of model equations, time-delay systems, time series analysis.
@article{ND_2013_9_4_a0,
     author = {M. V. Sysoeva and V. I. Ponomarenko and M. D. Prokhorov and I. V. Sysoev},
     title = {Reconstruction of time-delay systems under external periodic driving},
     journal = {Russian journal of nonlinear dynamics},
     pages = {613--626},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_4_a0/}
}
TY  - JOUR
AU  - M. V. Sysoeva
AU  - V. I. Ponomarenko
AU  - M. D. Prokhorov
AU  - I. V. Sysoev
TI  - Reconstruction of time-delay systems under external periodic driving
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 613
EP  - 626
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_4_a0/
LA  - ru
ID  - ND_2013_9_4_a0
ER  - 
%0 Journal Article
%A M. V. Sysoeva
%A V. I. Ponomarenko
%A M. D. Prokhorov
%A I. V. Sysoev
%T Reconstruction of time-delay systems under external periodic driving
%J Russian journal of nonlinear dynamics
%D 2013
%P 613-626
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_4_a0/
%G ru
%F ND_2013_9_4_a0
M. V. Sysoeva; V. I. Ponomarenko; M. D. Prokhorov; I. V. Sysoev. Reconstruction of time-delay systems under external periodic driving. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 4, pp. 613-626. http://geodesic.mathdoc.fr/item/ND_2013_9_4_a0/

[1] Gouesbet G., Meunier-Guttin-Cluzel G., Menard O., Chaos and its reconstruction, Nova Science, New York, 2003, 320 pp.

[2] Eykhoff P., System identification: Parameter and state estimation, Wiley-Interscience, London–New York, 1974, 555 pp.

[3] Bezruchko B. P., Smirnov D. A., Matematicheskoe modelirovanie i khaoticheskie vremennye ryady, GosUNTs «Kolledzh», Saratov, 2005, 320 pp.

[4] Horbelt W., Timmer J., Bünner M. J., Meucci R., Ciofini M., “Identifying physical properties of a $\mathrm{CO_2}$ laser by dynamical modeling of measured time series”, Phys. Rev. E, 64:1 (2001), 016222, 7 pp. | DOI

[5] Pavlov A. N., Yanson N. B., Kapitanik T., Anischenko V. S., “Rekonstruktsiya dinamicheskikh sistem po signalam maloi dlitelnosti”, Pisma v ZhTF, 25:11 (1999), 7–13

[6] Anischenko V. S., Pavlov A. N., Yanson N. B., “Rekonstruktsiya dinamicheskikh sistem v prilozhenii k resheniyu zadachi zaschity informatsii”, ZhTF, 68:12 (1998), 1–8

[7] Besruchko B. P., Smirnov D. A., “Constructing nonautonomous differential equations from experimental time series”, Phys. Rev. E, 63:1 (2000), 016207, 7 pp. | DOI | MR

[8] Bezruchko B. P., Smirnov D. A., Sysoev I. V., Seleznev E. P., “Rekonstruktsiya modelei neavtonomnykh sistem s diskretnym spektrom vozdeistviya”, Pisma v ZhTF, 29:19 (2003), 69–76

[9] Kulikov M. Yu., Mukhin D. N., Feigin A. M., “Baiesova strategiya otsenki tochnosti kharakteristik, izvlekaemykh iz eksperimentalnykh dannykh s pomoschyu bazovykh dinamicheskikh modelei atmosfernykh fotokhimicheskikh sistem”, Izv. vuzov. Radiofizika, 52:9 (2009), 690–699

[10] Yakhno Yu. V., Molkov Ya. I., Mukhin D. N., Loskutov E. M., Feigin A. M., “Rekonstruktsiya operatora evolyutsii kak sposob analiza elektricheskoi aktivnosti mozga pri epilepsii”, Izv. vuzov. PND, 19:6 (2011), 156–172 | Zbl

[11] Baake E., Baake M., Bock H. G., Briggs K. M., “Fitting ordinary differential equations to chaotic data”, Phys. Rev. A, 45:8 (1992), 5524–5529 | DOI

[12] Bezruchko B. P., Smirnov D. A., Sysoev I. V., “Identification of chaotic systems with hidden variables (modified Bock's algorithm)”, Chaos Solitons Fractals, 29:1 (2006), 82–90 | DOI | Zbl

[13] Kuang Y., Delay differential equations with applications in population dynamics, Academic Press, Boston, 1993, 398 pp. | MR

[14] Bocharov G. A., Rihan F. A., “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125:1–2 (2000), 183–199 | DOI | MR | Zbl

[15] Mokhov I. I., Smirnov D. A., “El Niño–Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices”, Geophys. Res. Lett., 33:3 (2006), L03708, 4 pp. | DOI

[16] Mackey M. C., Glass L., “Oscillations and chaos in physiological control systems”, Science, 197 (1977), 287–289 | DOI

[17] Glass L., Meki M., Ot chasov k khaosu: Ritmy zhizni, Mir, M., 1991, 248 pp. | MR | Zbl

[18] Ringwood V., Malpas S. C., “Slow oscillations in blood pressure via a nonlinear feedback model”, Am. J. Physiol. Regul. Integr. Comp. Physiol., 280 (2001), R1105–R1115

[19] Ikeda K., “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system”, Opt. Commun., 30:2 (1979), 257–261 | DOI

[20] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989, 280 pp. | MR | Zbl

[21] Prokhorov M. D., Ponomarenko V. I., “Encryption and decryption of information in chaotic communication systems governed by delay-differential equations”, Chaos Solitons Fractals, 35:5 (2008), 871–877 | DOI | Zbl

[22] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 508 pp.

[23] Voss H., Kurths J., “Reconstruction of non-linear time delay models from data by the use of optimal transformations”, Phys. Lett. A, 234:5 (1997), 336–344 | DOI | MR | Zbl

[24] Tian Y.-C., Gao F., “Extraction of delay information from chaotic time series based on information entropy”, Phys. D, 108:1–2 (1997), 113–118 | DOI | MR | Zbl

[25] Ellner S. P., Kendall B. E., Wood S. N., McCauley E., Briggs C. J., “Inferring mechanism from time-series data: Delay differential equations”, Phys. D, 110:3–4 (1997), 182–194 | DOI | Zbl

[26] Hegger R., Bünner M. J., Kantz H., Giaquinta A., “Identifying and modeling delay feedback systems”, Phys. Rev. Lett., 81:3 (1998), 558–561 | DOI

[27] Bünner M. J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A., “Reconstruction of systems with delayed feedback. 1: Theory”, Eur. Phys. J. D, 10:2 (2000), 165–176 | DOI

[28] Horbelt W., Timmer J., Voss H. U., “Parameter estimation in nonlinear delayed feedback systems from noisy data”, Phys. Lett. A, 299:5–6 (2002), 513–521 | DOI | Zbl

[29] Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Bezruchko B. P., “Opredelenie parametrov sistem s zapazdyvayuschei obratnoi svyazyu po khaoticheskim vremennym realizatsiyam”, ZhETF, 127:3 (2005), 515–527 | MR

[30] Ortín S., Gutiérrez J. M., Pesquera L., Vasquez H., “Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction”, Phys. A, 351:1 (2005), 133–141

[31] Siefert M., “Practical criterion for delay estimation using random perturbations”, Phys. Rev. E, 76:2 (2007), 026215, 5 pp. | DOI

[32] Yu D., Frasca M., Liu F., “Control-based method to identify underlying delays of a nonlinear dynamical system”, Phys. Rev. E, 78:4 (2008), 046209, 9 pp. | DOI | MR

[33] Prokhorov M. D., Ponomarenko V. I., “Reconstruction of time-delay systems using small impulsive disturbances”, Phys. Rev. E, 80:6 (2009), 066206, 6 pp. | DOI

[34] Zunino L., Soriano M. C., Fischer I., Rosso O. A., Mirasso C. R., “Permutation-information-theory approach to unveil delay dynamics from time-series analysis”, Phys. Rev. E, 82:4 (2010), 046212, 9 pp. | DOI | MR

[35] Ma H., Xu B., Lin W., Feng J., “Adaptive identification of time delays in nonlinear dynamical models”, Phys. Rev. E, 82:6 (2010), 066210, 11 pp. | DOI | MR

[36] Dai Ch., Chen W., Li L., Zhu Y., Yang Y., “Seeker optimization algorithm for parameter estimation of time-delay chaotic systems”, Phys. Rev. E, 83:3 (2011), 036203, 11 pp. | DOI | MR

[37] Shigaev A. M., Dmitriev B. S., Zharkov Y. D., Ryskin N. M., “Chaotic dynamics of delayed feedback klystron oscillator and its control by external signal”, IEEE Trans. Electron Devices, 52:5 (2005), 790–797 | DOI

[38] Marchewka C., Larsen P., Bhattacharjee S., Booske J., Sengele S., Ryskin N. M., Titov V. N., “Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback”, Phys. Plasmas, 13:1 (2006), 013104, 20 pp. | DOI

[39] Bezruchko B. P., Seleznev E. P., Smirnov D. A., “Rekonstruktsiya uravnenii neavtonomnogo nelineinogo ostsillyatora po vremennomu ryadu: Modeli, eksperiment”, Izv. vuzov. PND, 7:1 (1999), 49–68 | MR | Zbl