Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_3_a9, author = {Ivan A. Bizyaev and Alexey V. Borisov and Ivan S. Mamaev}, title = {The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside}, journal = {Russian journal of nonlinear dynamics}, pages = {547--566}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/} }
TY - JOUR AU - Ivan A. Bizyaev AU - Alexey V. Borisov AU - Ivan S. Mamaev TI - The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside JO - Russian journal of nonlinear dynamics PY - 2013 SP - 547 EP - 566 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/ LA - ru ID - ND_2013_9_3_a9 ER -
%0 Journal Article %A Ivan A. Bizyaev %A Alexey V. Borisov %A Ivan S. Mamaev %T The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside %J Russian journal of nonlinear dynamics %D 2013 %P 547-566 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/ %G ru %F ND_2013_9_3_a9
Ivan A. Bizyaev; Alexey V. Borisov; Ivan S. Mamaev. The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 547-566. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp. | Zbl
[2] Bizyaev I. A., Tsyganov A. V., “O sfere Rausa”, Nelineinaya dinamika, 8:3 (2012), 569–583 ; Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 1–11 | MR | DOI | MR
[3] Bolotin S. V., Popova T. V., “Ob uravneniyakh dvizheniya sistemy vnutri katyaschegosya shara”, Nelineinaya dinamika, 9:1 (2013), 51–58 | MR
[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 116:5 (2011), 443–464 | DOI | MR
[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307 | MR
[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov: 2”, Nelineinaya dinamika, 9:1 (2013), 59–76 | MR
[7] Borisov A. V., Kilin A. A., Mamaev I. S., “Gamiltonovost i integriruemost zadachi Suslova”, Nelineinaya dinamika, 6:1 (2010), 127–142 ; Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | MR | DOI | MR | Zbl
[8] Burov A. A., “O chastnykh integralakh uravnenii dvizheniya tverdogo tela po gladkoi gorizontalnoi ploskosti”, Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, ed. V. V. Rumyantsev, VTs AN SSSR, M., 1985, 118–121 | MR
[9] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektorn. i tenzorn. analizu, 5, 1941, 302–327 | MR
[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp. | MR
[11] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[12] Borisov A. V., Mamaev I. S., “Dve negolonomnye integriruemye svyazki tverdykh tel”, Nelineinaya dinamika, 7:3 (2011), 559–568 ; Borisov A. V., Mamaev I. S., “Two nonholonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl
[13] Borisov A. V., Mamaev I. S., “Dinamika shara Chaplygina s polostyu, zapolnennoi zhidkostyu”, Nelineinaya dinamika, 8:1 (2012), 103–111 ; Borisov A. V., Mamaev I. S., “The dynamics of the Chaplygin ball with a fluid-filled cavity”, Regul. Chaotic Dyn., 18:5 (2013), 490–496 | DOI | MR
[14] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202
[15] Borisov A. V., Mamaev I. S., Treschev D. V., “Kachenie tverdogo tela bez proskalzyvaniya i vercheniya: Kinematika i dinamika”, Nelineinaya dinamika, 8:4 (2012), 783–797 ; Borisov A. V., Mamaev I. S., Treschev D. V., “Rolling of a rigid body without slipping and spinning: Kinematics and dynamics”, J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173
[16] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[17] Kozlov V. V., “Teorema Eilera–Yakobi–Li ob integriruemosti”, Nelineinaya dinamika, 9:2 (2013), 229–245 | MR
[18] Kozlov V. V., “Zamechaniya ob integriruemykh sistemakh”, Nelineinaya dinamika, 9:3 (2013), 459–478
[19] Pivovarova E. N., Ivanova T. B., “Issledovanie ustoichivosti periodicheskikh reshenii v zadache o kachenii shara s mayatnikom”, Vestn. UdGU. Matem. Mekhan. Komp. nauki, 2012, no. 4, 146–155
[20] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.
[21] Fedorov Yu. N., “O dvukh integriruemykh negolonomnykh sistemakh v klassicheskoi dinamike”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1989, no. 4, 38–41 | MR | Zbl
[22] Kharlamov A. P., Kharlamov M. P., “Negolonomnyi sharnir”, Mekhanika tverdogo tela, 1995, no. 27, 1–7 | MR | Zbl
[23] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”: S. A. Chaplygin, Sobr. soch., v. 1, GITTL, M.–Leningrad, 1948, 26–56
[24] Borisov A. V., Mamaev I. S., “The rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[25] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 200–219 | MR
[26] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl
[27] Fuller F. B., “The writhing number of a space curve”, Proc. Natl. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl
[28] Halme A., Schonberg T., Wang Y., “Motion control of a spherical mobile robot”, Proc. of the 4th Internat. Workshop on Advanced Motion Control, v. 1, 1996, 259–264 | DOI
[29] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A, 29 (1996), 667–674 | DOI | MR | Zbl
[30] Kim B., “Routh symmetry in the Chaplygin's rolling ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670 | DOI | MR | Zbl
[31] Patera J., Sharp R. T., Winternitz P., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl
[32] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a class of spherical rolling robots”, IEEE Internat. Conf. on Robotics and Automation, 2012, 3226–3231
[33] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44 (2011), 105203, 15 pp. | DOI | MR | Zbl