The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 547-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate two systems consisting of a spherical shell rolling on a plane without slipping and a moving rigid body fixed inside the shell by means of two different mechanisms. In the former case the rigid body is fixed at the center of the ball on a spherical hinge. We show an isomorphism between the equations of motion for the inner body with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by means of the nonholonomic hinge. The equations of motion for this system have been obtained and new integrable cases found. A special feature of the set of tensor invariants of this system is that it leads to the Euler–Jacobi–Lie theorem, which is a new integration mechanism in nonholonomic mechanics.
Keywords: nonholonomic constraint, tensor invariants, nonholonomic hinge.
Mots-clés : isomorphism
@article{ND_2013_9_3_a9,
     author = {Ivan A. Bizyaev and Alexey V. Borisov and Ivan S. Mamaev},
     title = {The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside},
     journal = {Russian journal of nonlinear dynamics},
     pages = {547--566},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
TI  - The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 547
EP  - 566
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/
LA  - ru
ID  - ND_2013_9_3_a9
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%A Alexey V. Borisov
%A Ivan S. Mamaev
%T The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside
%J Russian journal of nonlinear dynamics
%D 2013
%P 547-566
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/
%G ru
%F ND_2013_9_3_a9
Ivan A. Bizyaev; Alexey V. Borisov; Ivan S. Mamaev. The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 547-566. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a9/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp. | Zbl

[2] Bizyaev I. A., Tsyganov A. V., “O sfere Rausa”, Nelineinaya dinamika, 8:3 (2012), 569–583 ; Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 1–11 | MR | DOI | MR

[3] Bolotin S. V., Popova T. V., “Ob uravneniyakh dvizheniya sistemy vnutri katyaschegosya shara”, Nelineinaya dinamika, 9:1 (2013), 51–58 | MR

[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 116:5 (2011), 443–464 | DOI | MR

[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307 | MR

[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov: 2”, Nelineinaya dinamika, 9:1 (2013), 59–76 | MR

[7] Borisov A. V., Kilin A. A., Mamaev I. S., “Gamiltonovost i integriruemost zadachi Suslova”, Nelineinaya dinamika, 6:1 (2010), 127–142 ; Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | MR | DOI | MR | Zbl

[8] Burov A. A., “O chastnykh integralakh uravnenii dvizheniya tverdogo tela po gladkoi gorizontalnoi ploskosti”, Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, ed. V. V. Rumyantsev, VTs AN SSSR, M., 1985, 118–121 | MR

[9] Vagner V. V., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. seminara po vektorn. i tenzorn. analizu, 5, 1941, 302–327 | MR

[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyutern. issled., M.–Izhevsk, 2005, 576 pp. | MR

[11] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[12] Borisov A. V., Mamaev I. S., “Dve negolonomnye integriruemye svyazki tverdykh tel”, Nelineinaya dinamika, 7:3 (2011), 559–568 ; Borisov A. V., Mamaev I. S., “Two nonholonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl

[13] Borisov A. V., Mamaev I. S., “Dinamika shara Chaplygina s polostyu, zapolnennoi zhidkostyu”, Nelineinaya dinamika, 8:1 (2012), 103–111 ; Borisov A. V., Mamaev I. S., “The dynamics of the Chaplygin ball with a fluid-filled cavity”, Regul. Chaotic Dyn., 18:5 (2013), 490–496 | DOI | MR

[14] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[15] Borisov A. V., Mamaev I. S., Treschev D. V., “Kachenie tverdogo tela bez proskalzyvaniya i vercheniya: Kinematika i dinamika”, Nelineinaya dinamika, 8:4 (2012), 783–797 ; Borisov A. V., Mamaev I. S., Treschev D. V., “Rolling of a rigid body without slipping and spinning: Kinematics and dynamics”, J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173

[16] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[17] Kozlov V. V., “Teorema Eilera–Yakobi–Li ob integriruemosti”, Nelineinaya dinamika, 9:2 (2013), 229–245 | MR

[18] Kozlov V. V., “Zamechaniya ob integriruemykh sistemakh”, Nelineinaya dinamika, 9:3 (2013), 459–478

[19] Pivovarova E. N., Ivanova T. B., “Issledovanie ustoichivosti periodicheskikh reshenii v zadache o kachenii shara s mayatnikom”, Vestn. UdGU. Matem. Mekhan. Komp. nauki, 2012, no. 4, 146–155

[20] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946, 655 pp.

[21] Fedorov Yu. N., “O dvukh integriruemykh negolonomnykh sistemakh v klassicheskoi dinamike”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1989, no. 4, 38–41 | MR | Zbl

[22] Kharlamov A. P., Kharlamov M. P., “Negolonomnyi sharnir”, Mekhanika tverdogo tela, 1995, no. 27, 1–7 | MR | Zbl

[23] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”: S. A. Chaplygin, Sobr. soch., v. 1, GITTL, M.–Leningrad, 1948, 26–56

[24] Borisov A. V., Mamaev I. S., “The rolling of a rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[25] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 200–219 | MR

[26] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl

[27] Fuller F. B., “The writhing number of a space curve”, Proc. Natl. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl

[28] Halme A., Schonberg T., Wang Y., “Motion control of a spherical mobile robot”, Proc. of the 4th Internat. Workshop on Advanced Motion Control, v. 1, 1996, 259–264 | DOI

[29] Hojman S. A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A, 29 (1996), 667–674 | DOI | MR | Zbl

[30] Kim B., “Routh symmetry in the Chaplygin's rolling ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670 | DOI | MR | Zbl

[31] Patera J., Sharp R. T., Winternitz P., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl

[32] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a class of spherical rolling robots”, IEEE Internat. Conf. on Robotics and Automation, 2012, 3226–3231

[33] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A, 44 (2011), 105203, 15 pp. | DOI | MR | Zbl