On the dynamics of a body with an axisymmetric base sliding on a rough plane
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 521-545.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the dynamics of a body with a flat base sliding on a horizontal plane under the assumption of linear pressure distribution of the body on the plane as the simplest dynamically consistent friction model. For analysis we use the descriptive function method similar to the methods used in the problems of Hamiltonian dynamics with one degree of freedom and allowing a qualitative analysis of the system to be made without explicit integration of equations of motion. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
Keywords: dry friction, linear pressure distribution, two-dimensional motion, planar motion
Mots-clés : Coulomb law.
@article{ND_2013_9_3_a8,
     author = {Nadezhda N. Erdakova and Ivan S. Mamaev},
     title = {On the dynamics of a body with an axisymmetric base sliding on a rough plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {521--545},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a8/}
}
TY  - JOUR
AU  - Nadezhda N. Erdakova
AU  - Ivan S. Mamaev
TI  - On the dynamics of a body with an axisymmetric base sliding on a rough plane
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 521
EP  - 545
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a8/
LA  - ru
ID  - ND_2013_9_3_a8
ER  - 
%0 Journal Article
%A Nadezhda N. Erdakova
%A Ivan S. Mamaev
%T On the dynamics of a body with an axisymmetric base sliding on a rough plane
%J Russian journal of nonlinear dynamics
%D 2013
%P 521-545
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a8/
%G ru
%F ND_2013_9_3_a8
Nadezhda N. Erdakova; Ivan S. Mamaev. On the dynamics of a body with an axisymmetric base sliding on a rough plane. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 521-545. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a8/

[1] Bolotov E. A., O dvizhenii materialnoi ploskoi figury, stesnennom svyazyami s treniem, Universitetskaya tip., M., 1906, 147 pp.

[2] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963, 1110 pp. | MR

[3] Zhukovskii N. E., “Uslovie ravnovesiya tverdogo tela, opirayuschegosya na nepodvizhnuyu ploskost nekotoroi ploschadkoi i moguschego peremeschatsya vdol etoi ploskosti s treniem”: N. E. Zhukovskii, Polnoe cobr. soch., V 16 tt., v. 1, TsAGI im. N. E. Zhukovskogo, Komis. po izdaniyu trudov N. E. Zhukovskogo, eds. S. A. Chaplygin, A. I. Nekrasov, V. A. Arkhangelskii i dr., ONTI NKTP SSSR, M.–Leningrad, 1937, 433–449; Труды Отделения физических наук Общества любителей естествознания, антропологии и этнографии, 9:1 (1897), 339–354

[4] Zhuravlëv V. F., “O modeli sukhogo treniya v zadache kacheniya tverdykh tel”, PMM, 62:5 (1998), 762–767 | MR

[5] Zhuravlëv V. F., “Dinamika tyazhelogo odnorodnogo shara na sherokhovatoi ploskosti”, MTT, 2006, no. 6, 3–9

[6] Ivanov A. P., “Dinamicheski sovmestnaya model kontaktnykh napryazhenii pri ploskom dvizhenii tverdogo tela”, PMM, 73:2 (2009), 189–203 | MR | Zbl

[7] Ishlinskii A. Yu., Sokolov B. N., Chernousko F. L., “O dvizhenii ploskikh tel pri nalichii sukhogo treniya”, MTT, 1981, no. 4, 17–28

[8] Karapetyan A. V., Rusinova A. M., “Kachestvennyi analiz dinamiki diska na naklonnoi ploskosti s treniem”, PMM, 75:5 (2011), 731–737 | MR | Zbl

[9] Kireenkov A. A., “O dvizhenii odnorodnogo vraschayuschegosya diska po ploskosti v usloviyakh kombinirovannogo treniya”, MTT, 2002, no. 1, 60–67

[10] Kireenkov A. A., Semendyaev S. V., Filatov V. F., “Eksperimentalnoe issledovanie svyazannykh dvumernykh modelei treniya skolzheniya i vercheniya”, MTT, 2010, no. 6, 192–202

[11] Kragelskii I. V., Trenie i iznos, Mashinostroenie, M., 1968, 480 pp.

[12] Kragelskii I. V., Vinogradova I. E., Koeffitsienty treniya, Spravochnoe posobie, Mashgiz, M., 1962, 220 pp.

[13] Kragelskii I. V., Dobychin M. N., Kombalov V. S., Osnovy raschetov na trenie i iznos, Mashinostroenie, M., 1977, 526 pp.

[14] Kragelskii I. V., Schedrov V. S., Razvitie nauki o trenii. Sukhoe trenie, AN SSSR, M., 1956, 236 pp.

[15] Lure A. I., Analiticheskaya mekhanika, Nauka, M., 1961, 824 pp. | MR

[16] Penleve P., Lektsii o trenii, Gostekhizdat, M., 1954, 316 pp.

[17] Petrov P. N., Reinolds O., Zommerfeld A., Michel A., Zhukovskii N. E., Chaplygin S. A., Gidrodinamicheskaya teoriya smazki, GTTI, M.–Leningrad, 1934, 576 pp.

[18] Rozenblat G. M., Dinamicheskie sistemy s sukhim treniem, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 204 pp.

[19] Rozenblat G. M., “Ob integrirovanii uravnenii dvizheniya tela, opirayuschegosya na sherokhovatuyu ploskost tremya tochkami”, Dokl. RAN, 435:4 (2010), 475–478 | MR | Zbl

[20] Salnikova T. V., Treschev D. V., Gallyamov S. R., “Dvizhenie svobodnoi shaiby po sherokhovatoi gorizontalnoi ploskosti”, Nelineinaya dinamika, 8:1 (2012), 83–101

[21] Samsonov V. A., “O trenii pri skolzhenii i verchenii tela”, Vestn. MGU. Ser. 1. Matem. Mekhan., 1981, no. 2, 76–78 | Zbl

[22] Treschev D. V., Erdakova N. N., Ivanova T. B., “O finalnom dvizhenii tsilindricheskikh tel po sherokhovatoi ploskosti”, Nelineinaya dinamika, 8:3 (2012), 2–20

[23] Fedichev O. B., Fedichev P. O., “Tormozhenie i ostanovka ploskikh tel, skolzyaschikh po sherokhovatoi gorizontalnoi poverkhnosti”, Nelineinaya dinamika, 7:3 (2011), 549–558

[24] Fufaev N. A., “Ob idealizatsii poverkhnosti soprikosnoveniya v vide tochechnogo kontakta v zadachakh kacheniya”, PMM, 30:1 (1966), 67–72 | Zbl

[25] Shiller N. N., “Zametka o ravnovesii tverdogo tela pri deistvii treniya na nekotoruyu ploskuyu chast ego poverkhnosti”, Tr. Otd. fiz. nauk Obsch-va lyubitelei estestvoznaniya, 5:1 (1892), 17–19

[26] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[27] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[28] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 8:3 (2013), 277–328 | DOI | MR

[29] Boussinesq J., Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885, 721 pp.

[30] Contensou P., “Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de la toupie”, Kreiselprobleme Gyrodynamics, IUTAM Symp. Celerina, Springer, Berlin, 1963, 201–216 ; Контенсу П., “Связь между трением скольжения и трением верчения и ее учет в теории волчка”, Проблемы гироскопии, Сб. научн. ст., ред. Г. Циглер, Мир, М., 1967, 60–77 | DOI | MR

[31] Farkas Z., Bartels G., Unger T., Wolf D. E., “Frictional coupling between sliding and spinning motion”, Phys. Rev. Lett., 90:24 (2003), 248302, 4 pp. ; Фаркаш З., Бартельс Г., Унгер Т., Вольф Д., “О силе трения при поступательном и вращательном движении плоского тела”, Нелинейная динамика, 7:1 (2011), 139–146 | DOI

[32] Field P., “On the motion of a disc with three supports on a rough plane”, Phys. Rev. (Series I), 35:3 (1912), 177–184 | DOI | MR | Zbl

[33] Goyal S., Planar sliding of a rigid body with dry friction: Limit surfaces and dynamics of motion, Ph. D. Thesis, Cornell University, Ithaca, 1989

[34] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction. 1: Limit surface and moment function”, Wear, 143 (1991), 307–330 | DOI

[35] Goyal S., Ruina A., Papadopoulos J., “Planar sliding with dry friction. 2: Dynamics of motion”, Wear, 143 (1991), 331–352 | DOI

[36] Jellett J. H., A treatise on the theory on friction, MacMillan, London, 1872, 220 pp.; Джеллетт Д. Х., Трактат по теории трения, НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, М.–Ижевск, 2009, 264 с.

[37] Jensen M. T., Shegelski M. R. A., “The motion of curling rocks: Experimental investigation and semi-phenomenological description”, Can. J. Phys., 82 (2004), 1–19 | DOI

[38] Johnson K. L., Contact mechanics, Cambridge Univ. Press, Cambridge, 1987, 452 pp. ; Джонсон К., Механика контактного взаимодействия, Мир, М., 1989, 510 с.

[39] MacMillan W. D., Dynamics of rigid bodies, McGraw-Hill, New York, 1936, 478 pp. ; Мак-Миллан В. Д., Динамика твердого тела, ИИЛ, М., 1951, 468 с. | Zbl

[40] Shegelski M. R. A., Holenstein R., “Rapidly rotating sliding cylinders: Trajectories with large lateral displacements”, Can. J. Phys., 80 (2002), 141–147 | DOI

[41] Shegelski M. R. A., Goodvin G. L., Booth R., Bagnall P., Reid M., “Exact normal forces and trajectories for a rotating tripod sliding on a smooth surface”, Can. J. Phys., 82 (2004), 875–890 | DOI

[42] Shegelski M. R. A., Niebergall R., Walton M. A., “The motion of a curling rock”, Can. J. Phys., 74 (1996), 663–670 | DOI

[43] Shegelski M. R. A., Reid M., “Comment on: «Curling rock dynamics — The motion of a curling rock: inertial vs. noninertial reference frames»”, Can. J. Phys., 77 (1999), 903–922 | DOI

[44] Shegelski M. R. A., “The motion of a curling rock: Analytical approach”, Can. J. Phys., 78 (2000), 857–864 | DOI

[45] Erismann Th., “Theorie und Anwendungen des echten Kugelgetriebes”, Z. Angew. Math. Phys., 5:5 (1954), 355–388 | DOI | MR | Zbl

[46] Voyenli K., Eriksen E., “On the motion of an ice hockey puck”, Amer. J. Phys., 53 (1985), 1149–1153 | DOI

[47] Weidman P. D., Malhotra C. P., “Regimes of terminal motion of sliding spinning disks”, Phys. Rev. Lett., 95 (2005), 264303, 4 pp. | DOI

[48] Weidman P. D., Malhotra Ch. P., “On the terminal motion of sliding spinning disks with uniform Coulomb friction”, Phys. D, 233:1 (2007), 1–13 ; Вайдман П. Д., Мальотра Ч., “О финальном движении скользящих и вращающихся дисков с однородным кулоновым трением”, Нелинейная динамика, 7:2 (2011), 339–365 | DOI | MR | Zbl

[49] Wittenburg J., “Ebene Bewegungen bei flächenhaft verteilten Reibungskräften”, Z. Angew. Math. Phys., 5 (1970), 637–640