Dynamics and control of a spherical robot with an axisymmetric pendulum actuator
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 507-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the possibility of the motion control of a ball with a pendulum mechanism with non-holonomic constraints using gaits — the simplest motions such as acceleration and deceleration during the motion in a straight line, rotation through a given angle and their combination. Also, the controlled motion of the system along a straight line with a constant acceleration is considered. For this problem the algorithm for calculating the control torques is given and it is shown that the resulting reduced system has the first integral of motion.
Keywords: non-holonomic constraint, control, spherical shell, integral of motion.
@article{ND_2013_9_3_a7,
     author = {Tatyana B. Ivanova and Elena N. Pivovarova},
     title = {Dynamics and control of a spherical robot with an axisymmetric pendulum actuator},
     journal = {Russian journal of nonlinear dynamics},
     pages = {507--520},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a7/}
}
TY  - JOUR
AU  - Tatyana B. Ivanova
AU  - Elena N. Pivovarova
TI  - Dynamics and control of a spherical robot with an axisymmetric pendulum actuator
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 507
EP  - 520
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a7/
LA  - ru
ID  - ND_2013_9_3_a7
ER  - 
%0 Journal Article
%A Tatyana B. Ivanova
%A Elena N. Pivovarova
%T Dynamics and control of a spherical robot with an axisymmetric pendulum actuator
%J Russian journal of nonlinear dynamics
%D 2013
%P 507-520
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a7/
%G ru
%F ND_2013_9_3_a7
Tatyana B. Ivanova; Elena N. Pivovarova. Dynamics and control of a spherical robot with an axisymmetric pendulum actuator. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 507-520. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a7/

[1] Balandin D. V., Komarov M. A., Osipov G. V., “Upravlenie dvizheniem sfericheskogo robota s mayatnikovym privodom”, Izv. RAN. Teoriya i sistemy upravleniya, 2013, no. 4, 150–163 | DOI

[2] Bolotin S. V., Popova T. V., “On the motion of a mechanical system inside a rolling ball”, Regul. Chaotic Dyn., 18:1–2 (2013), 159–165 | DOI | MR | Zbl

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | MR | Zbl

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors, 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | MR | Zbl

[5] Borisov A. V., Mamaev I. S., “Two non-holonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl

[6] Martynenko Yu. G., Formalskii A. M., “K teorii upravleniya monotsiklom”, PMM, 69:4 (2005), 569–583 | MR | Zbl

[7] Martynenko Yu. G., Formalskii A. M., “Upravlenie prodolnym dvizheniem odnokolesnogo apparata po nerovnoi poverkhnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2005, no. 4, 165–173 | MR | Zbl

[8] Pivovarova E. N., Ivanova T. B., “Issledovanie ustoichivosti periodicheskikh reshenii v zadache o kachenii shara s mayatnikom”, Vestn. UdGU. Matem. Mekhan. Kompyut. nauki, 2012, no. 4, 146–155

[9] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 1:1 (2012), 3–23 | DOI

[10] Das T., Murkherjee R., “Dynamic analysis of rectilinear motion of a self-propelling disk with unbalance masses”, Trans. ASME. J. Appl. Mech., 68 (2001), 58–66 | DOI | Zbl

[11] Kayacan E., Bayraktaroglu Z. Y., Saeys W., “Modeling and control of a spherical rolling robot: A decoupled dynamics approach”, Robotica, 30:12 (2012), 671–680

[12] Michaud F., Caron S., “Roball, the rolling robot”, Auton. Robots, 12 (2002), 211–222 | DOI | Zbl

[13] Nagai M., Control system of a spherical robot, Master Thesis, Lulea University of Technology, 2008

[14] Schroll G. C., Dynamic model of a spherical robot from first principles, Master Thesis, Colorado State University, 2010