On the loss of contact of the Euler disk
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 499-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents experimental investigation of a homogeneous circular disk rolling on a horizontal plane. In this paper two methods of experimental determination of the loss of contact between the rolling disk and the horizontal surface before the abrupt halt are proposed. Experimental results for disks of different masses and different materials are presented. The reasons for “micro losses” of contact with surface revealed during the rolling are discussed.
Keywords: Euler disk, loss of contact, experiment.
@article{ND_2013_9_3_a6,
     author = {Alexey V. Borisov and Ivan S. Mamaev and Yury L. Karavaev},
     title = {On the loss of contact of the {Euler} disk},
     journal = {Russian journal of nonlinear dynamics},
     pages = {499--506},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a6/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
AU  - Yury L. Karavaev
TI  - On the loss of contact of the Euler disk
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 499
EP  - 506
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a6/
LA  - ru
ID  - ND_2013_9_3_a6
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Ivan S. Mamaev
%A Yury L. Karavaev
%T On the loss of contact of the Euler disk
%J Russian journal of nonlinear dynamics
%D 2013
%P 499-506
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a6/
%G ru
%F ND_2013_9_3_a6
Alexey V. Borisov; Ivan S. Mamaev; Yury L. Karavaev. On the loss of contact of the Euler disk. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 499-506. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a6/

[1] Bendik J., The official Euler's disk website, , Tangent Toy Co., Sausalito, CA http://www.eulersdisk.comhttp://www.tangenttoy.com

[2] Appel P., “Sur l'intégration des équations du mouvement d'un corps pesant de rédolution roulant par une arête circulaire sur up plan horizontal; cas parculier du cerceau”, Rendiconti del circolo matematico di Palermo, 14 (1900), 1–6 | DOI | Zbl

[3] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”: S. A. Chaplygin, Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, M.–L., 1949, 9–27; Чаплыгин С. А., Собр. соч., т. 1, Огиз, M.–Л., 1948, 57–75

[4] Korteweg D., “Extrait d'une lettre à M. Appel”, Rendiconti del circolo matematico di Palermo, 14 (1900), 7–8 | DOI | Zbl

[5] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamic of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl

[6] Moffatt H. K., “Euler's disk and its finite-time singularity”, Nature, 404 (2000), 833–834 | DOI

[7] van den Engh G., Nelson P., Roach J., “Numismatic gyrations”, Nature, 408 (2000), 540

[8] Bildsten L., “Viscous dissipation for Euler's disk”, Phys. Rev. E, 66 (2002), 056309, 2 pp. | DOI | MR

[9] Villanueva R., Epstein M., “Vibrations of Euler's disk”, Phys. Rev. E, 71 (2005), 066609, 7 pp. | DOI

[10] Kessler P., O'Reilly O. M., “The ringing of Euler's disk”, Regul. Chaotic Dyn., 7:1 (2002), 49–60 | DOI | MR | Zbl

[11] O'Reilly O. M., “The dynamics of rolling disks and sliding disks”, Nonlinear Dynam., 10 (1996), 287–305 | DOI | MR

[12] McDonald A. J., McDonald K. T., The rolling motion of a disk on a horizontal plane, Los Alamos National Laboratory, 2000, arXiv: physics/0008227

[13] Le Saux C., Leine R. L., Glocker C., “Dynamics of a rolling disk in the presence of dry friction”, J. Nonlinear Sci., 15:1 (2005), 27–61 | DOI | MR | Zbl

[14] Caps H., Dorbolo S., Ponte S., Croisier H., Vandewalle N., “Rolling and slipping motion of Euler's disk”, Phys. Rev. E, 69:5 (2004), 056610, 6 pp. | DOI | MR

[15] Stanislavsky A. A., Weron K., “Nonlinear oscillations in the rolling motion of Euler's disk”, Phys. D, 156:10 (2001), 247–259 | DOI | MR | Zbl

[16] Easwar K., Rouyer F., Menon N., “Speeding to a stop: The finite-time singularity of a spinning disk”, Phys. Rev. E, 66:4 (2002), 045102(R), 3 pp. | DOI

[17] Leine R. L., “Measurements of the finite-time singularity of the Euler disk”, Proc. of the 7th EUROMECH Solid Mechanics Conf. (Lisbon, Portugal, September 7–11, 2009), eds. J. Ambrosio et al.

[18] Leine R. L., “Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion”, Arch. Appl. Mech., 79:11 (2009), 1063–1082 | DOI | Zbl

[19] Saje M., Zupan D., “The rattling of Euler's disk”, Multidiscipline Modeling in Materials and Structures, 2:1 (2006), 49–66 | DOI

[20] Petrie D., Hunt J. L., Gray C. G., Does the Euler disk slip during its motion?, Amer. J. Phys., 70:10 (2002), 1025–1028 | DOI

[21] Mitsui T., Aihara K., Terayama C., Kobayashi H., Shimomura Y., Can a spinning egg really jump?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2074 (2006), 2897–2905 | DOI | MR | Zbl

[22] Branicki M., Shimomura Y., “Dynamics of an axisymmetric body spinning on a horizontal surface. 4: Stability of steady spin states and the «rising egg» phenomenon for convex axisymmetric bodies”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2075 (2006), 3253–3275 | DOI | MR | Zbl

[23] Batista M., “The nearly horizontally rolling of a thick disk on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 344–354 | DOI | MR | Zbl

[24] Batista M., “Self-induced jumping of a rigid body of revolution on a smooth horizontal surface”, Internat. J. Non-Linear Mech., 43 (2008), 26–35 | DOI | Zbl

[25] Ivanov A. P., “On detachment conditions in the problem on the motion of a rigid body on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 355–368 | DOI | MR | Zbl