Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_3_a4, author = {Valery V. Kozlov}, title = {Notes on integrable systems}, journal = {Russian journal of nonlinear dynamics}, pages = {459--478}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/} }
Valery V. Kozlov. Notes on integrable systems. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 459-478. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/
[1] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957, 63 pp. | MR | Zbl
[2] Kozlov V. V., “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 2013:18 (4), 329–343 | MR | Zbl
[3] Olver P. J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer, New York, 1986, 497 pp. | DOI | MR | Zbl
[4] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 296 pp. | MR
[5] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1, Gauthier-Villars, Paris, 1914, 618 pp. | Zbl
[6] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI | MR | Zbl
[7] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, 4th ed., Cambridge Univ. Press, New York, 1959, 456 pp. | MR
[8] Nekhoroshev N. N., “Peremennye deistvie–ugol i ikh obobscheniya”, Tr. Mosk. matem. obsch-va, 26, 1972, 181–198 | Zbl
[9] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR
[10] Brailov A. V., “Polnaya integriruemost nekotorykh geodezicheskikh potokov i integriruemye sistemy s nekommutiruyuschimi integralami”, Dokl. AN SSSR, 271:2 (1983), 273–276 | MR
[11] Stekloff W., “Application du théorème généralisé de Jacobi au problème de Jacobi–Lie”, C. R. Acad. Sci. Paris, 148 (1909), 465–468 | Zbl
[12] Kozlov V. V., “An extended Hamilton–Jacobi method”, Regul. Chaotic Dyn., 17:6 (2012), 580–596 | DOI | MR | Zbl
[13] Kozlov V. V., Symmetries, topology, and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, 378 pp. | MR
[14] Kozlov V. V., “Zamechaniya ob odnoi teoreme Li, kasayuscheisya tochnoi integriruemosti differentsialnykh uravnenii”, Differents. uravneniya, 41:4 (2005), 553–555 | MR | Zbl