Notes on integrable systems
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 459-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of integrability conditions for systems of differential equations is discussed. Darboux's classical results on the integrability of linear non-autonomous systems with an incomplete set of particular solutions are generalized. Special attention is paid to linear Hamiltonian systems. The paper discusses the general problem of integrability of the systems of autonomous differential equations in an $n$-dimensional space which permit the algebra of symmetry fields of dimension $\ge n$. Using a method due to Liouville, this problem is reduced to investigating the integrability conditions for Hamiltonian systems with Hamiltonians linear in the momentums in phase space of dimension that is twice as large. In conclusion, the integrability of an autonomous system in three-dimensional space with two independent non-trivial symmetry fields is proved. It should be emphasized that no additional conditions are imposed on these fields.
Keywords: integrability by quadratures, adjoint system, Hamilton equations, Euler–Jacobi theorem, Lie theorem, symmetries.
@article{ND_2013_9_3_a4,
     author = {Valery V. Kozlov},
     title = {Notes on integrable systems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {459--478},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/}
}
TY  - JOUR
AU  - Valery V. Kozlov
TI  - Notes on integrable systems
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 459
EP  - 478
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/
LA  - ru
ID  - ND_2013_9_3_a4
ER  - 
%0 Journal Article
%A Valery V. Kozlov
%T Notes on integrable systems
%J Russian journal of nonlinear dynamics
%D 2013
%P 459-478
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/
%G ru
%F ND_2013_9_3_a4
Valery V. Kozlov. Notes on integrable systems. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 3, pp. 459-478. http://geodesic.mathdoc.fr/item/ND_2013_9_3_a4/

[1] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957, 63 pp. | MR | Zbl

[2] Kozlov V. V., “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 2013:18 (4), 329–343 | MR | Zbl

[3] Olver P. J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer, New York, 1986, 497 pp. | DOI | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 296 pp. | MR

[5] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1, Gauthier-Villars, Paris, 1914, 618 pp. | Zbl

[6] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI | MR | Zbl

[7] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, 4th ed., Cambridge Univ. Press, New York, 1959, 456 pp. | MR

[8] Nekhoroshev N. N., “Peremennye deistvie–ugol i ikh obobscheniya”, Tr. Mosk. matem. obsch-va, 26, 1972, 181–198 | Zbl

[9] Mischenko A. S., Fomenko A. T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR

[10] Brailov A. V., “Polnaya integriruemost nekotorykh geodezicheskikh potokov i integriruemye sistemy s nekommutiruyuschimi integralami”, Dokl. AN SSSR, 271:2 (1983), 273–276 | MR

[11] Stekloff W., “Application du théorème généralisé de Jacobi au problème de Jacobi–Lie”, C. R. Acad. Sci. Paris, 148 (1909), 465–468 | Zbl

[12] Kozlov V. V., “An extended Hamilton–Jacobi method”, Regul. Chaotic Dyn., 17:6 (2012), 580–596 | DOI | MR | Zbl

[13] Kozlov V. V., Symmetries, topology, and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, 378 pp. | MR

[14] Kozlov V. V., “Zamechaniya ob odnoi teoreme Li, kasayuscheisya tochnoi integriruemosti differentsialnykh uravnenii”, Differents. uravneniya, 41:4 (2005), 553–555 | MR | Zbl