Integrability and stochastic behavior in some nonholonomic dynamics problems
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 257-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the dynamics of systems describing the rolling without slipping and spinning (rubber rolling) of an ellipsoid on a plane and a sphere. We research these problems using Poincaré maps, which investigation helps to discover a new integrable case.
Keywords: nonholonomic constraint, invariant measure, first integral, Poincaré map, integrability and chaos.
@article{ND_2013_9_2_a4,
     author = {Ivan A. Bizyaev and Alexey O. Kazakov},
     title = {Integrability and stochastic behavior in some nonholonomic dynamics problems},
     journal = {Russian journal of nonlinear dynamics},
     pages = {257--265},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a4/}
}
TY  - JOUR
AU  - Ivan A. Bizyaev
AU  - Alexey O. Kazakov
TI  - Integrability and stochastic behavior in some nonholonomic dynamics problems
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 257
EP  - 265
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a4/
LA  - ru
ID  - ND_2013_9_2_a4
ER  - 
%0 Journal Article
%A Ivan A. Bizyaev
%A Alexey O. Kazakov
%T Integrability and stochastic behavior in some nonholonomic dynamics problems
%J Russian journal of nonlinear dynamics
%D 2013
%P 257-265
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a4/
%G ru
%F ND_2013_9_2_a4
Ivan A. Bizyaev; Alexey O. Kazakov. Integrability and stochastic behavior in some nonholonomic dynamics problems. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 257-265. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a4/

[1] Ehlers K., Koiller J., “Rubber rolling: Geometry and dynamics of 2-3-5 distributions”, Proc. IUTAM Symp. on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), 469–480 | MR

[2] Koiller J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl

[3] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[4] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[5] A. V. Borisov, I. S. Mamaev (red.), Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 328 pp.

[6] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp.

[7] Yaroschuk V. A., “Novye sluchai suschestvovaniya integralnogo invarianta v zadache o kachenii tverdogo tela bez proskalzyvaniya po nepodvizhnoi poverkhnosti”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1992, no. 6, 26–30

[8] Yaroschuk V. A., “Integralnyi invariant v zadache o kachenii ellipsoida so spetsialnymi raspredeleniyami mass po nepodvizhnoi poverkhnosti bez proskalzyvaniya”, MTT, 1995, no. 2, 54–57

[9] Voronets P. V., “K zadache o dvizhenii tverdogo tela, katyaschegosya bez skolzheniya po dannoi poverkhnosti pod deistviem dannykh sil”, Uravneniya dvizheniya tverdogo tela, katyaschegosya bez skolzheniya po nepodvizhnoi ploskosti, Tip. Imp. un-ta sv. Vladimira, Kiev, 1903, 1–11