Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_2_a0, author = {Alexey V. Borisov and Ivan S. Mamaev and Ivan A. Bizyaev}, title = {The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere}, journal = {Russian journal of nonlinear dynamics}, pages = {141--202}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_2_a0/} }
TY - JOUR AU - Alexey V. Borisov AU - Ivan S. Mamaev AU - Ivan A. Bizyaev TI - The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere JO - Russian journal of nonlinear dynamics PY - 2013 SP - 141 EP - 202 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_2_a0/ LA - ru ID - ND_2013_9_2_a0 ER -
%0 Journal Article %A Alexey V. Borisov %A Ivan S. Mamaev %A Ivan A. Bizyaev %T The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere %J Russian journal of nonlinear dynamics %D 2013 %P 141-202 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_2_a0/ %G ru %F ND_2013_9_2_a0
Alexey V. Borisov; Ivan S. Mamaev; Ivan A. Bizyaev. The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 2, pp. 141-202. http://geodesic.mathdoc.fr/item/ND_2013_9_2_a0/
[1] Bizyaev I. A., Tsyganov A. V., “O sfere Rausa”, Nelineinaya dinamika, 8:3 (2012), 569–583 ; Bizyaev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A, 46:8 (2013), 1–11 | MR | DOI | MR
[2] Bizyaev I. A., Kazakov A. O., “Integriruemost i stokhastichnost nekotorykh zadach negolonomnoi mekhaniki”, Nelineinaya dinamika, 9:2 (2013), 257–265 | MR | Zbl
[3] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 116:5 (2011), 443–464 | DOI | MR
[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl
[5] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Kachenie bez vercheniya shara po ploskosti: otsutstvie invariantnoi mery v sisteme s polnym naborom integralov”, Nelineinaya dinamika, 8:3 (2012), 605–616
[6] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 | MR
[7] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307
[8] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov, 2”, Nelineinaya dinamika, 9:1 (2013), 59–76 | MR
[9] Borisov A. V., Mamaev I. S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (2001), 793–795 | DOI | MR | Zbl
[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR
[11] Borisov A. V., Mamaev I. S., “O nesuschestvovanii invariantnoi mery pri kachenii neodnorodnogo ellipsoida po ploskosti”, Matem. zametki, 77:6 (2005), 930–931 | DOI
[12] Borisov A. V., Mamaev I. S., “Kachenie neodnorodnogo shara po sfere bez vercheniya i krucheniya”, Nelineinaya dinamika, 2:4 (2006), 445–452 ; Borisov A. V., Mamaev I. S., “Rolling of a non-homogeneous ball over a sphere without slipping and twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI | MR | Zbl
[13] Borisov A. V., Mamaev I. S., “Izomorfizm i gamiltonovo predstavlenie nekotorykh negolonomnykh sistem”, Sib. matem. zhurn., 48:1 (2007), 33–45 | MR | Zbl
[14] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280
[15] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 117:4 (2003), 407–418 | DOI
[16] Borisov A. V., Mamaev I. S., “Dve negolonomnye integriruemye svyazki tverdykh tel”, Nelineinaya dinamika, 7:3 (2011), 559–568 ; Borisov A. V., Mamaev I. S., “Two non-holonomic integrable problems tracing back to Chaplygin”, Regul. Chaotic Dyn., 17:2 (2012), 191–198 | DOI | MR | Zbl
[17] Borisov A. V., Mamaev I. S., “Dinamika shara Chaplygina s polostyu, zapolnennoi zhidkostyu”, Nelineinaya dinamika, 8:1 (2012), 103–111
[18] Borisov A. V., Mamaev I. S., Treschev D. V., “Kachenie tverdogo tela bez proskalzyvaniya i vercheniya: kinematika i dinamika”, Nelineinaya dinamika, 8:4 (2012), 783–797
[19] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 ; А. В. Борисов, И. С. Мамаев (ред.), Неголономные динамические системы: интегрируемость, хаос, странные аттракторы, Сб. ст., Институт компьютерных исследований, М.–Ижевск, 2002, 67–70 | MR | MR
[20] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, Sb. st., eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR
[21] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518
[22] Gonchenko A. S., Gonchenko S. V., “O suschestvovanii attraktorov lorentsevskogo tipa v negolonomnoi modeli «keltskogo kamnya»”, Nelineinaya dinamika, 9:1 (2013), 77–89 | MR
[23] Kazakov A. O., “Fenomeny khaoticheskoi dinamiki v zadache o kachenii rok-n-rollera bez vercheniya”, Nelineinaya dinamika, 9:2 (2013), 309–325
[24] Karapetyan A. V., “O realizatsii negolonomnykh svyazei silami vyazkogo treniya i ustoichivost keltskikh kamnei”, PMM, 45:1 (1981), 42–51 | Zbl
[25] Karapetyan A. V., “Semeistva permanentnykh vraschenii trekhosnogo ellipsoida na sherokhovatoi gorizontalnoi ploskosti i ikh vetvleniya”, Aktualnye problemy klassicheskoi i nebesnoi mekhaniki, Sb. st., ed. S. D. Furta, Elf, M., 1998, 46–51
[26] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[27] Kozlov V. V., “Integralnye invarianty posle Puankare i Kartana”: E. Kartan, Integralnye invarianty, URSS, M., 1998, 218–260
[28] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, UdGU, Izhevsk, 1995, 432 pp. | MR
[29] Kolesnikov S. N., “O kachenii diska po gorizontalnoi ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1985, no. 2, 55–60 | Zbl
[30] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: ot matematiki k fizike, IKI, M.–Izhevsk, 2013, 488 pp.
[31] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi mekhanike «keltskogo kamnya»”, Nelineinaya dinamika, 8:4 (2012), 735–762
[32] Kuleshov A. S., “Pervye integraly v zadache o dvizhenii paraboloida vrascheniya po sherokhovatoi ploskosti”, Dokl. RAN, 400:1 (2005), 46–48 | MR
[33] Markeev A. P., Dinamika tela, soprikasayuschegosya s tverdoi poverkhnostyu, Nauka, M., 1992, 336 pp. | MR | Zbl
[34] Stanchenko S. V., “O negolonomnykh sistemakh Chaplygina”, PMM, 53:1 (1989), 16–23 | MR | Zbl
[35] Sevryuk M. B., “Nekotorye problemy teorii KAM: uslovno-periodicheskie dvizheniya v tipichnykh sistemakh”, UMN, 50:2(302) (1995), 111–124 | MR | Zbl
[36] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101
[37] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314
[38] Yaroschuk V. A., “Novye sluchai suschestvovaniya integralnogo invarianta v zadache o kachenii tverdogo tela bez proskalzyvaniya po nepodvizhnoi poverkhnosti”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1992, no. 6, 26–30
[39] Yaroschuk V. A., “Integralnyi invariant v zadache o kachenii ellipsoida so spetsialnymi raspredeleniyami mass po nepodvizhnoi poverkhnosti bez proskalzyvaniya”, MTT, 1995, no. 2, 54–57 | MR
[40] Beghin H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bulletin de la S. M. F., 57 (1929), 118–124 | MR | Zbl
[41] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[42] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: new integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[43] Borisov A. V., Mamaev I. S., Hamiltonization of nonholonomic systems, 21 Sep. 2005, arXiv: nlin.SI/0509036v1 | MR
[44] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl
[45] Bridges Th. J., “Poisson structure of the reversible $1:1$ resonance”, Phys. D, 112:1–2 (1998), 40–49 | DOI | MR | Zbl
[46] Cendra H., Etchechoury M., “Rolling of a symmetric sphere on a horizontal plane without sliding or slipping”, Rep. Math. Phys., 57:3 (2006), 367–374 | DOI | MR | Zbl
[47] Cendra H., Etchechoury M., Ferraro S. J., “Impulsive control of a symmetric ball rolling without sliding or spinning”, J. Geom. Mech., 2:4 (2010), 321–342 | MR | Zbl
[48] Chavoya-Aceves O., Piña E., “Symmetry lines of the dynamics of a heavy rigid body with a fixed point”, Il Nuovo Cimento B, 103:4 (1989), 369–387 | DOI | MR
[49] Devaney R. L., “Reversible diffeomorphisms and flows”, Trans. Amer. Math. Soc., 218 (1976), 89–113 | DOI | MR | Zbl
[50] Ehlers K., Koiller J., “Rubber rolling: geometry and dynamics of 2-3-5 distributions”, Proc. IUTAM Symp. on Hamiltonian dynamics, vortex structures, turbulence (Moscow, Russia, 25–30 August 2006), 469–480 | MR
[51] Fassò F., Giacobbe A., Sansonetto N., “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10:3 (2005), 267–284 | DOI | MR | Zbl
[52] Fedorov Yu. N., Kozlov V. V., “Various aspects of $n$-dimensional rigid body dynamics”, Amer. Math. Soc. Transl. (2), 168 (1995), 141–171 | MR | Zbl
[53] Fedorov Yu. N., Jovanović B., “Hamiltonization of the generalized Veselova LR system”, Regul. Chaotic Dyn., 14:4–5 (2009), 495–505 | DOI | MR | Zbl
[54] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer, New York, 1990, 459 pp. ; Гукенхеймер Дж., Холмс Ф., Нелинейные колебания, динамические системы и бифуркации векторных полей, ИКИ, М.–Ижевск, 2002, 561 с. | MR
[55] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4 sér., 5 (1895), 397–417
[56] Kim B., “Routh symmetry in the Chaplygin's rolling ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670 | DOI | MR | Zbl
[57] Koiler J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR
[58] Kozlov V. V., “On invariant manifolds of nonholonomic systems”, Regul. Chaotic Dyn., 17:2 (2012), 131–141 | DOI | MR | Zbl
[59] Lamb J. S. W., Lima M. F. S., Martins R. M., Teixeira M. A., Yang J., On the Hamiltonian structure of normal forms for elliptic equilibria of reversible vector fields in $\mathbb{R}^4$, IMECC/Unicamp Research Report 05/10, 2010
[60] Lerman L. M., Turaev D. V., “Breakdown of symmetry in reversible systems”, Regul. Chaotic Dyn., 17:3–4 (2012), 318–336 | DOI | MR | Zbl
[61] Mamaev I. S., “New cases when the invariant measure and first integrals exist in the problem of a body rolling on a surface”, Regul. Chaotic Dyn., 8:3 (2003), 331–335 | DOI | MR | Zbl
[62] Marigo A., Bicchi A., “Rolling bodies with regular surface: controllability theory and applications”, IEEE Trans. Autom. Control, 45:9 (2000), 1586–1599 ; Мариго А., Биччи А., “Качение тел с регулярной поверхностью: теория управляемости и приложения”, Нелинейная динамика, 9:1 (2013), 101–132 | DOI | MR | Zbl | MR
[63] Martins R. M., Teixeira M. A., “On the similarity of Hamiltonian and reversible vector fields in 4D”, Commun. Pure Appl. Anal., 10:4 (2011), 1257–1266 | DOI | MR | Zbl
[64] van der Meer J. C., Sanders J. A., Vanderbauwhede A., “Hamiltonian structure of the reversible nonsemisimple $1:1$ resonance”, Dynamics, bifurcation and symmetry: new trends and new tools (Cargèse, France, September 3–9, 1993), NATO ASI Series, Series C: Mathematical and Physical Sciences, 437, ed. P. Chossat, Kluwer, Dordrecht, 1994, 221–240 | MR | Zbl
[65] Ormerod J. T., Quispel G. R., Roberts J. A. G., “Discrete integrable systems: QRT mappings and elliptic surfaces”, SIAM Rev., 54:1 (2012), 198–199 | MR
[66] Ramos A., “Poisson structures for reduced non-holonomic systems”, J. Phys. A, 37 (2004), 4821–4842 | DOI | MR | Zbl
[67] Roberts J. A. G., Quispe G. R. W., “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Phys. Rep., 216:2–3 (1992), 63–177 | DOI | MR
[68] Sevryuk M. B., Reversible Systems, Lecture Notes in Math., 1211, Springer, Berlin, 1986, 319 pp. | MR | Zbl
[69] Sevryuk M. B., “The reversible context 2 in KAM theory: the first steps”, Regul. Chaotic Dyn., 16:1–2 (2011), 24–38 | DOI | MR | Zbl
[70] Sprott J. C., Elegant chaos: algebraically simple chaotic flows, World Sci. Publ., Hackensack, NJ, 2010, 285 pp. ; Спротт Дж. К., Элегантный хаос: алгебраически простые хаотические потоки, ИКИ, Москва–Ижевск, 2012, 328 с. | MR
[71] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Univ. Press, Cambridge, 1988, 456 pp. ; Уиттекер Э. Т., Аналитическая динамика, УдГУ, НИЦ «Регулярная и хаотическая динамика», Москва–Ижевск, 1999, 584 с. | MR | Zbl
[72] Woronetz P., “Über die rollende Bewegung einer Kreisscheibe auf einer belibiegen Fläche unter der Wirkung von gegebenen Kräften”, Math. Ann., 67 (1909), 268–280 | DOI | MR | Zbl
[73] Woronetz P., “Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt”, Math. Ann., 70 (1911), 410–453 | DOI | MR | Zbl
[74] Woronetz P., “Über die Bewegungsgleichungen eines starren Körpers”, Math. Ann., 71 (1912), 392–403 | DOI | MR | Zbl