On existence of Lorenz-like attractors in a nonholonomic model of Celtic stones
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonholonomic model of movement of celtic stone on the plane. We show that, for certain values of parameters characterizing geometrical and physical properties of the stone, a strange Lorenz-like attractor is observed in the model. We have traced both scenarios of appearance and break-down of this attractor.
Keywords: Celtic stone, nonholonomic model, the Lorenz attractor, Lorenz-like attractor for diffeomorphisms, chaotic dynamics.
@article{ND_2013_9_1_a6,
     author = {Alexander S. Gonchenko and Sergey V. Gonchenko},
     title = {On existence of {Lorenz-like} attractors in a nonholonomic model of {Celtic} stones},
     journal = {Russian journal of nonlinear dynamics},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a6/}
}
TY  - JOUR
AU  - Alexander S. Gonchenko
AU  - Sergey V. Gonchenko
TI  - On existence of Lorenz-like attractors in a nonholonomic model of Celtic stones
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 77
EP  - 89
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a6/
LA  - ru
ID  - ND_2013_9_1_a6
ER  - 
%0 Journal Article
%A Alexander S. Gonchenko
%A Sergey V. Gonchenko
%T On existence of Lorenz-like attractors in a nonholonomic model of Celtic stones
%J Russian journal of nonlinear dynamics
%D 2013
%P 77-89
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a6/
%G ru
%F ND_2013_9_1_a6
Alexander S. Gonchenko; Sergey V. Gonchenko. On existence of Lorenz-like attractors in a nonholonomic model of Celtic stones. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a6/

[1] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, Negolonomnye dinamicheskie sistemy: Integriruemost, khaos, strannye attraktory, Sb. st., Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2002, 293–316 | MR

[2] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 117:4 (2003), 407–418 | DOI

[3] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “O nekotorykh novykh aspektakh khaoticheskoi dinamiki «keltskogo kamnya»”, Nelineinaya dinamika, 8:3 (2012), 507–518

[4] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi dinamike «keltskogo kamnya»”, Nelineinaya dinamika, 8:4 (2012), 735–762

[5] Borisov A. V., Jalnine A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[6] Delshams A., Gonchenko S. V., Gonchenko V. S., Lazaro J. T., Sten'kin O. V., “Abundance of attracting, repelling and elliptic orbits in two-dimensional reversible maps”, Nonlinearity, 26:1 (2013), 1–35 | DOI | MR

[7] Gonchenko S. V., Gonchenko V. S., “O bifurkatsiyakh rozhdeniya zamknutykh invariantnykh krivykh v sluchae dvumernykh diffeomorfizmov s gomoklinicheskimi kasaniyami”, Tr. MIAN, 244, 2004, 87–114 | MR | Zbl

[8] Gonchenko S. V., Gonchenko V. S., Tatjer J. C., “Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps”, Regul. Chaotic Dyn., 12:3 (2007), 233–266 | DOI | MR | Zbl

[9] Gonchenko S. V., Ovsyannikov I. I., Simó C., Turaev D. V., “Three-dimensional Hénon-like maps and wild Lorenz-like attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3493–3508 | DOI | MR | Zbl

[10] Dmitriev A. S., Komlev Yu. A., Turaev D. V., “Bifurcation phenomena in the $1:1$ resonant horn for the forced van der Pol–Duffing equation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2:1 (1992), 93–98 | DOI | MR

[11] Gonchenko S. V., Meiss J. D., Ovsyannikov I. I., “Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation”, Regul. Chaotic Dyn., 11:2 (2006), 191–212 | DOI | MR | Zbl

[12] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya dinamika, 8:1 (2012), 3–28

[13] Gonchenko A. S., Gonchenko S. V., Ovsyannikov I. I., Turaev D. V., “Lorenz-like attractors in three-dimensional Hénon maps”, Mathematical Modelling of Natural Phenomena, 2013 (to appear)

[14] Plykin R. V., Sataev E. A., Shlyachkov S. V., “Strannye attraktory”, Dinamicheskie sistemy-9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 9, ed. D. V. Anosov, VINITI, M., 1999, 100–148

[15] Shilnikov L. P., “Teoriya bifurkatsii i turbulentnost”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb., eds. E. A. Leontovich i dr., GGU, Gorkii, 1986, 150–163 | MR

[16] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, 2-e izd., Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp.

[17] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. sb., 189:2 (1998), 137–160 | DOI | MR | Zbl

[18] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i zadacha o periodicheskom vozmuschenii attraktorov lorentsevskogo tipa”, Dokl. RAN, 418:1 (2008), 23–27 | MR | Zbl

[19] Anosov D. V., Solodov V. V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy-9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 9, ed. D. V. Anosov, VINITI, M., 1999, 12–99

[20] Auslander J., Seibert P., “Prolongations and stability in dynamical systems”, Ann. Inst. Fourier (Grenoble), 14:2 (1964), 237–267 | DOI | MR

[21] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44, 1982, 150–212 | MR

[22] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, Dokl. AN SSSR, 234 (1977), 336–339

[23] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”: Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 317–335 | MR

[24] Tucker W., “The Lorenz attractor exists”, C. R. Acad. Sci. Paris Sér. 1 Math., 328:12 (1999), 1197–1202 | DOI | MR | Zbl

[25] Tigan G., Turaev D., “On the Lorenz attractor in the Shimuizu–Morioka model”, Nonlinearity (to appear)