How to control the Chaplygin ball using rotors. II
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 59-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our earlier paper [2] we examined the problem of control of a balanced dynamically nonsymmetric sphere with rotors with no-slip condition at the point of contact. In this paper we investigate the controllability of a ball in the presence of friction. We also study the problem of the existence and stability of singular dissipation-free periodic solutions for a free ball in the presence of friction forces. The issues of constructive realization of the proposed algorithms are discussed.
Keywords: non-holonomic constraint, control, dry friction, stability, periodic solutions.
Mots-clés : viscous friction
@article{ND_2013_9_1_a5,
     author = {Alexey V. Borisov and Alexander A. Kilin and Ivan S. Mamaev},
     title = {How to control the {Chaplygin} ball using rotors. {II}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a5/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Alexander A. Kilin
AU  - Ivan S. Mamaev
TI  - How to control the Chaplygin ball using rotors. II
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 59
EP  - 76
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a5/
LA  - ru
ID  - ND_2013_9_1_a5
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Alexander A. Kilin
%A Ivan S. Mamaev
%T How to control the Chaplygin ball using rotors. II
%J Russian journal of nonlinear dynamics
%D 2013
%P 59-76
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a5/
%G ru
%F ND_2013_9_1_a5
Alexey V. Borisov; Alexander A. Kilin; Ivan S. Mamaev. How to control the Chaplygin ball using rotors. II. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a5/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307

[3] Gallop E. G., “On the rise of a spinning top”, Proc. Cambridge Philos. Soc., 19:3 (1904), 356–373 | Zbl

[4] Ishikawa M., Kitayoshi R., Sugie T., “Volvot: A spherical mobile robot with eccentric twin rotors”, Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics (Phuket, Thailand, Dec. 7–11, 2011), 1462–1467

[5] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[6] Otani T., Urakubo T., Maekawa S., Tamaki H., Tada Y., “Position and attitude control of a spherical rolling robot equipped with a gyro”, Proc. of the 9th IEEE Internat. Workshop on Advanced Motion Control (2006), 416–421

[7] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a class of spherical rolling robots”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, 14–18 May, 2012), 3226–3231

[8] Svinin M., Morinaga A., Yamamoto M., “An analysis of the motion planning problem for a spherical rolling robot driven by internal rotors”, Proc. IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (2012), 414–419

[9] Svinin M., Morinaga A., Yamamoto M., “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1–2 (2013), 126–143 | DOI | MR

[10] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 576 pp. | MR

[12] Karepetyan A. V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998, 166 pp.

[13] Karapetyan A. V., “Globalnyi kachestvennyi analiz dinamiki kitaiskogo volchka (tip-top)”, MTT, 2008, no. 3, 33–41 | MR

[14] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 532 pp. | MR | Zbl

[15] Markeev A. P., Dinamika tela, soprikasayuschegosya s tverdoi poverkhnostyu, 2-e izd., ispr. i dop., NITs «Regulyarnaya i khaoticheskaya dinamika». Institut kompyuternykh issledovanii, M.–Izhevsk, 2011, 463 pp.

[16] Markeev A. P., Dinamika tela, soprikasayuschegosya s tverdoi poverkhnostyu, Nauka, M., 1992, 335 pp. | MR | Zbl

[17] Martynenko Yu. G., “Upravlenie dvizheniem mobilnykh kolesnykh robotov”, Fundament. i prikl. matem., 11:8 (2005), 29–80

[18] Moschuk N. K., “O dvizhenii shara Chaplygina na gorizontalnoi ploskosti”, PMM, 47:6 (1983), 916–921

[19] Moschuk N. K., “O dvizhenii tyazhelogo tverdogo tela na gorizontalnoi ploskosti s vyazkim treniem”, PMM, 49:1 (1985), 66–71

[20] Penleve P., Lektsii o trenii, Gostekhizdat, M., 1954, 316 pp.

[21] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101