On the motion of a mechanical system inside a rolling ball
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 51-58
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a mechanical system inside a rolling ball and show that if the ideal constraints have spherical symmetry, the equations of motion have a Lagrangian form. Without symmetry, this is not true.
Keywords:
nonholonomic constraint, rolling ball, Hamilton principle.
Mots-clés : Lagrange equations
Mots-clés : Lagrange equations
@article{ND_2013_9_1_a4,
author = {Sergey V. Bolotin and Tatiana V. Popova},
title = {On the motion of a mechanical system inside a rolling ball},
journal = {Russian journal of nonlinear dynamics},
pages = {51--58},
year = {2013},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/}
}
Sergey V. Bolotin; Tatiana V. Popova. On the motion of a mechanical system inside a rolling ball. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp.
[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338
[3] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR
[4] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 26–56