On the motion of a mechanical system inside a rolling ball
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mechanical system inside a rolling ball and show that if the ideal constraints have spherical symmetry, the equations of motion have a Lagrangian form. Without symmetry, this is not true.
Keywords: nonholonomic constraint, rolling ball, Hamilton principle.
Mots-clés : Lagrange equations
@article{ND_2013_9_1_a4,
     author = {Sergey V. Bolotin and Tatiana V. Popova},
     title = {On the motion of a mechanical system inside a rolling ball},
     journal = {Russian journal of nonlinear dynamics},
     pages = {51--58},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/}
}
TY  - JOUR
AU  - Sergey V. Bolotin
AU  - Tatiana V. Popova
TI  - On the motion of a mechanical system inside a rolling ball
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 51
EP  - 58
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/
LA  - ru
ID  - ND_2013_9_1_a4
ER  - 
%0 Journal Article
%A Sergey V. Bolotin
%A Tatiana V. Popova
%T On the motion of a mechanical system inside a rolling ball
%J Russian journal of nonlinear dynamics
%D 2013
%P 51-58
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/
%G ru
%F ND_2013_9_1_a4
Sergey V. Bolotin; Tatiana V. Popova. On the motion of a mechanical system inside a rolling ball. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a4/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2009, 416 pp.

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR

[4] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”, Sobr. soch., v. 1, GITTL, M.–L., 1948, 26–56