A motion of connected pendulums
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

A motion of two identical pendulums connected by a linear elastic spring with an arbitrary stiffness is investigated. The system moves in an homogeneous gravitational field in a fixed vertical plane. The paper mainly studies the linear orbital stability of a periodic motion for which the pendulums accomplish identical oscillations with an arbitrary amplitude. This is one of two types of nonlinear normal oscillations. Perturbational equations depend on two parameters, the first one specifies the spring stiffness, and the second one defines the oscillation amplitude. Domains of stability and instability in a plane of these parameters are obtained. Previously [1, 2] the problem of arbitrary linear and nonlinear oscillations of a small amplitude in a case of a small spring stiffness was investigated.
Keywords: pendulum, nonlinear oscillation, stability.
@article{ND_2013_9_1_a2,
     author = {Anatoly P. Markeev},
     title = {A motion of connected pendulums},
     journal = {Russian journal of nonlinear dynamics},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a2/}
}
TY  - JOUR
AU  - Anatoly P. Markeev
TI  - A motion of connected pendulums
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 27
EP  - 38
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a2/
LA  - ru
ID  - ND_2013_9_1_a2
ER  - 
%0 Journal Article
%A Anatoly P. Markeev
%T A motion of connected pendulums
%J Russian journal of nonlinear dynamics
%D 2013
%P 27-38
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a2/
%G ru
%F ND_2013_9_1_a2
Anatoly P. Markeev. A motion of connected pendulums. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a2/

[1] Zommerfeld A., Mekhanika, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 368 pp.

[2] Markeev A. P., “Nelineinye kolebaniya simpaticheskikh mayatnikov”, Nelineinaya dinamika, 6:3 (2010), 1–17

[3] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, AN SSSR, M.–L., 1941, 235 pp.

[4] Byrd P. F., Friedman M. D., Handbook of elliptic integral for engineers and physicists, Springer, Berlin, 1954, 355 pp. | MR | Zbl

[5] Malkin I. G., Teoriya ustoichivosti gamiltonovykh sistem, Nauka, M., 1966, 530 pp. | MR | Zbl

[6] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[7] Markeev A. P., Lineinye gamiltonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositelno tsentra mass, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2009, 396 pp.

[8] Stoker Dzh., Nelineinye kolebaniya v mekhanicheskikh i elektricheskikh sistemakh, IIL, M., 1953, 256 pp.

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967, 300 pp. | MR

[10] Dzhakalya G. E. O., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979, 319 pp. | MR

[11] Meissner E., “Über Schüttelerscheinungen in Systemen mit periodisch veränderlicher Elastizität”, Schweizerische Bauzeitung, 72:11 (1918), 95–98

[12] V. V. Bolotin (red.), Vibratsii v tekhnike, Spravochnik, v 6 tomakh, v. 1, Kolebaniya lineinykh sistem, 2-e izd., ispr. i dop., Mashinostroenie, M., 1999, 504 pp.

[13] Markeev A. P., “O nelineinom uravnenii Meissnera”, Nelineinaya dinamika, 7:3 (2011), 531–547