Dynamics and synchronization of the three coupled oscillators with reactive type of coupling
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A phenomenon of interaction between three reactively coupled van der Pol oscillators is considered in the paper. Phase equations are being obtained in second order approximation. Bifurcation analysis and Lyapunov's exponent maps are used for illustrating system behavior. The paper consider significant features of reactive coupling. Complicated original system behavior with steering parameter growth is being considered too.
Keywords: synchronization, quasi-periodical oscillations
Mots-clés : bifurcations, chaos.
@article{ND_2013_9_1_a1,
     author = {Alexander P. Kuznetsov and Ludmila V. Turukina and Nikolay Yu. Chernyschov},
     title = {Dynamics and synchronization of the three coupled oscillators with reactive type of coupling},
     journal = {Russian journal of nonlinear dynamics},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/}
}
TY  - JOUR
AU  - Alexander P. Kuznetsov
AU  - Ludmila V. Turukina
AU  - Nikolay Yu. Chernyschov
TI  - Dynamics and synchronization of the three coupled oscillators with reactive type of coupling
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 11
EP  - 25
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/
LA  - ru
ID  - ND_2013_9_1_a1
ER  - 
%0 Journal Article
%A Alexander P. Kuznetsov
%A Ludmila V. Turukina
%A Nikolay Yu. Chernyschov
%T Dynamics and synchronization of the three coupled oscillators with reactive type of coupling
%J Russian journal of nonlinear dynamics
%D 2013
%P 11-25
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/
%G ru
%F ND_2013_9_1_a1
Alexander P. Kuznetsov; Ludmila V. Turukina; Nikolay Yu. Chernyschov. Dynamics and synchronization of the three coupled oscillators with reactive type of coupling. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/

[1] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[2] Landa P. S., Avtokolebaniya v sistemakh s konechnym chislom stepenei svobody, Nauka, M., 1980, 360 pp. | MR | Zbl

[3] Landa P. S., Nelineinye kolebaniya i volny, Nauka, M., 1997, 395 pp. | MR

[4] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981, 351 pp. | MR | Zbl

[5] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, New York, 1984, 156 pp. | MR | Zbl

[6] Glass L., McKey M. C., From clocks to chaos: The rhythms of life, Princeton Univ. Press, Princeton, 1988, 248 pp. | MR | Zbl

[7] Winfree A., The geometry of biological time, 2nd ed., Springer, New York, 2001, 777 pp. | MR

[8] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Strelkova G. I., Sinkhronizatsiya regulyarnykh, khaoticheskikh i stokhasticheskikh kolebanii, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2008, 144 pp.

[9] Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V., Synchronization: From simple to complex, Springer, Berlin, 2009, 426 pp. | MR | Zbl

[10] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl

[11] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude response of coupled oscillators”, Phys. D, 41:3 (1990), 403–449 | DOI | MR | Zbl

[12] Ivanchenko M. V., Osipov G. V., Shalfeev V. D., Kurths J., “Synchronization of two non-scalar-coupled limit-cycle oscillators”, Phys. D, 189:1–2 (2004), 8–30 | DOI | MR | Zbl

[13] Rand R., Holmes P. J., “Bifurcation of periodic motions in two weakly coupled van der Pol oscillators”, Internat. J. Non-Linear Mech., 15:4–5 (1980), 387–399 | DOI | MR | Zbl

[14] Kuznetsov A. P., Stankevich N. V., Tyuryukina L. V., “Svyazannye ostsillyatory van der Polya i van der Polya–Duffinga: Fazovaya dinamika i kompyuternoe modelirovanie”, PND, 16:4 (2008), 101–136

[15] Kuznetsov A. P., Stankevich N. V., Turukina L. V., “Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues”, Phys. D, 238:14 (2009), 1203–1215 | DOI | MR | Zbl

[16] Pastor I., Pérez-García V. M., Encinas-Sanz F., Guerra J. M., “Ordered and chaotic behavior of two coupled van der Pol oscillators”, Phys. Rev. E, 48 (1993), 171–182 | DOI

[17] Poliashenko M., McKay S. R., Smith C. W., “Hysteresis of synchronous: Asynchronous regimes in a system of two coupled oscillators”, Phys. Rev. A, 43 (1991), 5638–5641 | DOI

[18] Pastor-Díaz I., López-Fraguas A., “Dynamics of two coupled van der Pol oscillators”, Phys. Rev. E, 52:2 (1995), 1480–1489 | DOI | MR

[19] Baesens S., Guckenheimer J., Kim S., McKay R. S., “Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos”, Phys. D, 49:3 (1991), 387–475 | DOI | MR | Zbl

[20] Ashwin P., Guasch J., Phelps J. M., “Rotation sets and phase-locking in an electronic three oscillator system”, Phys. D, 66:3–4 (1993), 392–411 | DOI | Zbl

[21] Ashwin P., King G. P., Swift J. W., “Three identical oscillators with symmetric coupling”, Nonlinearity, 3:3 (1990), 585–601 | DOI | MR | Zbl

[22] Ashwin P., “Boundary of two frequency behaviour in a system of three weakly coupled electronic oscillators”, Chaos Solitons Fractals, 9:8 (1998), 1279–1287 | DOI | MR | Zbl

[23] Ashwin P., Burylko O., Maistrenko Y., “Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators”, Phys. D, 237 (2008), 454–466 | DOI | MR | Zbl

[24] Maistrenko Yu., Popovych O., Burylko O., Tass P. A., “Mechanism of desynchronization in the finite-dimensional Kuramoto model”, Phys. Rev. Lett., 93 (2004), 084102, 4 pp. | DOI

[25] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717

[26] Kuznetsov A. P., Sataev I. R., Turukina L. V., “On the road towards multidimensional tori”, Commun. Nonlinear Sci. Numer. Simul., 16:6 (2011), 2371–2376 | DOI | MR | Zbl

[27] Buskirk R. V., Jeffries C., “Observation of chaotic dynamics of coupled nonlinear oscillators”, Phys. Rev. A, 31 (1985), 3332–3357 | DOI | MR

[28] Anishchenko V., Nikolaev S., Kurths J., “Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus”, Chaos, 18 (2008), 037123, 7 pp. | DOI | MR

[29] Anishchenko V., Nikolaev S., “Transition to chaos from quasiperiodic motions on the four-dimensional torus perturbed by external noise”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:9 (2008), 2733–2741 | DOI | MR | Zbl

[30] Anishchenko V. S., Nikolaev S. M., Kurths J., “Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus”, Phys. Rev. E, 76 (2007), 046216, 4 pp.

[31] Anishchenko V., Astakhov S., Vadivasova T., “Phase dynamics of two coupled oscillators under external periodic force”, Europhys. Lett., 86 (2009), 30003 | DOI

[32] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Feoktistov A. V., “Chislennoe i eksperimentalnoe issledovanie vneshnei sinkhronizatsii dvukhchastotnykh kolebanii”, Nelineinaya dinamika, 5:2 (2009), 237–252

[33] Kuznetsov A., Sataev I., Turukina L., “Synchronization of quasi-periodic oscillations in coupled phase oscillators”, Tech. Phys. Lett., 36:5 (2010), 478–481 | DOI

[34] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425

[35] Lee T. E., Cross M. C., “Pattern formation with trapped ions”, Phys. Rev. Lett., 106 (2011), 143001, 4

[36] Lifshitz R., Zumdieck A., Rogers J. L., Cross M. C., “Synchronization by nonlinear frequency pulling”, Phys. Rev. Lett., 93 (2004), 224101, 4 pp. | DOI

[37] Battelino P. M., “Persistence of three-frequency quasiperiodicity under large perturbations”, Phys. Rev. A, 38 (1988), 1495–1502 | DOI | MR

[38] Rompala K., Rand R., Howland H., “Dynamics of three coupled van der Pol oscillators with application to circadian rhythms”, Commun. Nonlinear Sci. Numer. Simul., 12:5 (2007), 794–803 | DOI | MR | Zbl

[39] Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M., Nelineinye kolebaniya, Fizmatlit, M., 2002, 292 pp.

[40] Kryukov A. K., Osipov G. V., Polovinkin A. V., “Multistabilnost sinkhronnykh rezhimov v ansamblyakh neidentichnykh ostsillyatorov: Tsepochka i reshetka svyazannykh elementov”, PND, 17:2 (2009), 29–36

[41] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 617 pp. | MR | Zbl

[42] Broer N., Simó S., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 769–787 | MR | Zbl

[43] Kuznetsov A. P., Pozdnyakov M. V., Sedova Yu. V., “Svyazannye universalnye otobrazheniya s bifurkatsiei Neimarka–Sakera”, Nelineinaya dinamika, 8:3 (2012), 2–11