Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2013_9_1_a1, author = {Alexander P. Kuznetsov and Ludmila V. Turukina and Nikolay Yu. Chernyschov}, title = {Dynamics and synchronization of the three coupled oscillators with reactive type of coupling}, journal = {Russian journal of nonlinear dynamics}, pages = {11--25}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/} }
TY - JOUR AU - Alexander P. Kuznetsov AU - Ludmila V. Turukina AU - Nikolay Yu. Chernyschov TI - Dynamics and synchronization of the three coupled oscillators with reactive type of coupling JO - Russian journal of nonlinear dynamics PY - 2013 SP - 11 EP - 25 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/ LA - ru ID - ND_2013_9_1_a1 ER -
%0 Journal Article %A Alexander P. Kuznetsov %A Ludmila V. Turukina %A Nikolay Yu. Chernyschov %T Dynamics and synchronization of the three coupled oscillators with reactive type of coupling %J Russian journal of nonlinear dynamics %D 2013 %P 11-25 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/ %G ru %F ND_2013_9_1_a1
Alexander P. Kuznetsov; Ludmila V. Turukina; Nikolay Yu. Chernyschov. Dynamics and synchronization of the three coupled oscillators with reactive type of coupling. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a1/
[1] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.
[2] Landa P. S., Avtokolebaniya v sistemakh s konechnym chislom stepenei svobody, Nauka, M., 1980, 360 pp. | MR | Zbl
[3] Landa P. S., Nelineinye kolebaniya i volny, Nauka, M., 1997, 395 pp. | MR
[4] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981, 351 pp. | MR | Zbl
[5] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, New York, 1984, 156 pp. | MR | Zbl
[6] Glass L., McKey M. C., From clocks to chaos: The rhythms of life, Princeton Univ. Press, Princeton, 1988, 248 pp. | MR | Zbl
[7] Winfree A., The geometry of biological time, 2nd ed., Springer, New York, 2001, 777 pp. | MR
[8] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Strelkova G. I., Sinkhronizatsiya regulyarnykh, khaoticheskikh i stokhasticheskikh kolebanii, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2008, 144 pp.
[9] Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V., Synchronization: From simple to complex, Springer, Berlin, 2009, 426 pp. | MR | Zbl
[10] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New York, 1983, 453 pp. | MR | Zbl
[11] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude response of coupled oscillators”, Phys. D, 41:3 (1990), 403–449 | DOI | MR | Zbl
[12] Ivanchenko M. V., Osipov G. V., Shalfeev V. D., Kurths J., “Synchronization of two non-scalar-coupled limit-cycle oscillators”, Phys. D, 189:1–2 (2004), 8–30 | DOI | MR | Zbl
[13] Rand R., Holmes P. J., “Bifurcation of periodic motions in two weakly coupled van der Pol oscillators”, Internat. J. Non-Linear Mech., 15:4–5 (1980), 387–399 | DOI | MR | Zbl
[14] Kuznetsov A. P., Stankevich N. V., Tyuryukina L. V., “Svyazannye ostsillyatory van der Polya i van der Polya–Duffinga: Fazovaya dinamika i kompyuternoe modelirovanie”, PND, 16:4 (2008), 101–136
[15] Kuznetsov A. P., Stankevich N. V., Turukina L. V., “Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues”, Phys. D, 238:14 (2009), 1203–1215 | DOI | MR | Zbl
[16] Pastor I., Pérez-García V. M., Encinas-Sanz F., Guerra J. M., “Ordered and chaotic behavior of two coupled van der Pol oscillators”, Phys. Rev. E, 48 (1993), 171–182 | DOI
[17] Poliashenko M., McKay S. R., Smith C. W., “Hysteresis of synchronous: Asynchronous regimes in a system of two coupled oscillators”, Phys. Rev. A, 43 (1991), 5638–5641 | DOI
[18] Pastor-Díaz I., López-Fraguas A., “Dynamics of two coupled van der Pol oscillators”, Phys. Rev. E, 52:2 (1995), 1480–1489 | DOI | MR
[19] Baesens S., Guckenheimer J., Kim S., McKay R. S., “Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos”, Phys. D, 49:3 (1991), 387–475 | DOI | MR | Zbl
[20] Ashwin P., Guasch J., Phelps J. M., “Rotation sets and phase-locking in an electronic three oscillator system”, Phys. D, 66:3–4 (1993), 392–411 | DOI | Zbl
[21] Ashwin P., King G. P., Swift J. W., “Three identical oscillators with symmetric coupling”, Nonlinearity, 3:3 (1990), 585–601 | DOI | MR | Zbl
[22] Ashwin P., “Boundary of two frequency behaviour in a system of three weakly coupled electronic oscillators”, Chaos Solitons Fractals, 9:8 (1998), 1279–1287 | DOI | MR | Zbl
[23] Ashwin P., Burylko O., Maistrenko Y., “Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators”, Phys. D, 237 (2008), 454–466 | DOI | MR | Zbl
[24] Maistrenko Yu., Popovych O., Burylko O., Tass P. A., “Mechanism of desynchronization in the finite-dimensional Kuramoto model”, Phys. Rev. Lett., 93 (2004), 084102, 4 pp. | DOI
[25] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya i mnogochastotnye kolebaniya v tsepochke fazovykh ostsillyatorov”, Nelineinaya dinamika, 6:4 (2010), 693–717
[26] Kuznetsov A. P., Sataev I. R., Turukina L. V., “On the road towards multidimensional tori”, Commun. Nonlinear Sci. Numer. Simul., 16:6 (2011), 2371–2376 | DOI | MR | Zbl
[27] Buskirk R. V., Jeffries C., “Observation of chaotic dynamics of coupled nonlinear oscillators”, Phys. Rev. A, 31 (1985), 3332–3357 | DOI | MR
[28] Anishchenko V., Nikolaev S., Kurths J., “Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus”, Chaos, 18 (2008), 037123, 7 pp. | DOI | MR
[29] Anishchenko V., Nikolaev S., “Transition to chaos from quasiperiodic motions on the four-dimensional torus perturbed by external noise”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:9 (2008), 2733–2741 | DOI | MR | Zbl
[30] Anishchenko V. S., Nikolaev S. M., Kurths J., “Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus”, Phys. Rev. E, 76 (2007), 046216, 4 pp.
[31] Anishchenko V., Astakhov S., Vadivasova T., “Phase dynamics of two coupled oscillators under external periodic force”, Europhys. Lett., 86 (2009), 30003 | DOI
[32] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Feoktistov A. V., “Chislennoe i eksperimentalnoe issledovanie vneshnei sinkhronizatsii dvukhchastotnykh kolebanii”, Nelineinaya dinamika, 5:2 (2009), 237–252
[33] Kuznetsov A., Sataev I., Turukina L., “Synchronization of quasi-periodic oscillations in coupled phase oscillators”, Tech. Phys. Lett., 36:5 (2010), 478–481 | DOI
[34] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425
[35] Lee T. E., Cross M. C., “Pattern formation with trapped ions”, Phys. Rev. Lett., 106 (2011), 143001, 4
[36] Lifshitz R., Zumdieck A., Rogers J. L., Cross M. C., “Synchronization by nonlinear frequency pulling”, Phys. Rev. Lett., 93 (2004), 224101, 4 pp. | DOI
[37] Battelino P. M., “Persistence of three-frequency quasiperiodicity under large perturbations”, Phys. Rev. A, 38 (1988), 1495–1502 | DOI | MR
[38] Rompala K., Rand R., Howland H., “Dynamics of three coupled van der Pol oscillators with application to circadian rhythms”, Commun. Nonlinear Sci. Numer. Simul., 12:5 (2007), 794–803 | DOI | MR | Zbl
[39] Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M., Nelineinye kolebaniya, Fizmatlit, M., 2002, 292 pp.
[40] Kryukov A. K., Osipov G. V., Polovinkin A. V., “Multistabilnost sinkhronnykh rezhimov v ansamblyakh neidentichnykh ostsillyatorov: Tsepochka i reshetka svyazannykh elementov”, PND, 17:2 (2009), 29–36
[41] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 617 pp. | MR | Zbl
[42] Broer N., Simó S., Vitolo R., “The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web”, Bull. Belg. Math. Soc. Simon Stevin, 15:5 (2008), 769–787 | MR | Zbl
[43] Kuznetsov A. P., Pozdnyakov M. V., Sedova Yu. V., “Svyazannye universalnye otobrazheniya s bifurkatsiei Neimarka–Sakera”, Nelineinaya dinamika, 8:3 (2012), 2–11