Hyperbolic chaos in parametric oscillations of a string
Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline a possibility of chaotic dynamics associated with a hyperbolic attractor of the Smale–Williams type in mechanical vibrations of a nonhomogeneous string with nonlinear dissipation arising due to parametric excitation of modes at the frequencies $\omega$ and $3\omega$, when the pump is supplied by means of the string tension variations alternately at frequencies of $2\omega$ and $6\omega$.
Keywords: parametric oscillations, string, attractor, Lyapunov exponent.
Mots-clés : chaos
@article{ND_2013_9_1_a0,
     author = {Olga B. Isaeva and Alexey S. Kuznetsov and Sergey P. Kuznetsov},
     title = {Hyperbolic chaos in parametric oscillations of a string},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2013_9_1_a0/}
}
TY  - JOUR
AU  - Olga B. Isaeva
AU  - Alexey S. Kuznetsov
AU  - Sergey P. Kuznetsov
TI  - Hyperbolic chaos in parametric oscillations of a string
JO  - Russian journal of nonlinear dynamics
PY  - 2013
SP  - 3
EP  - 10
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2013_9_1_a0/
LA  - ru
ID  - ND_2013_9_1_a0
ER  - 
%0 Journal Article
%A Olga B. Isaeva
%A Alexey S. Kuznetsov
%A Sergey P. Kuznetsov
%T Hyperbolic chaos in parametric oscillations of a string
%J Russian journal of nonlinear dynamics
%D 2013
%P 3-10
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2013_9_1_a0/
%G ru
%F ND_2013_9_1_a0
Olga B. Isaeva; Alexey S. Kuznetsov; Sergey P. Kuznetsov. Hyperbolic chaos in parametric oscillations of a string. Russian journal of nonlinear dynamics, Tome 9 (2013) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/ND_2013_9_1_a0/

[1] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[2] Sinai Ya. G., “Stokhastichnost dinamicheskikh sistem”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1979, 192–212

[3] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2002, 560 pp.

[4] Kuznetsov S. P., “Dinamicheskii khaos i odnorodno giperbolicheskie attraktory: ot matematiki k fizike”, UFN, 181:2 (2011), 121–149 | DOI | MR

[5] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, UFN, 117:4 (2003), 407–418 | DOI

[6] Kuptsov P. V., Kuznetsov S. P., Pikovsky A., “Hyperbolic chaos of Turing patterns”, Phys. Rev. Lett., 108 (2012), 194101, 4 pp. | DOI

[7] Belykh V., Belykh I., Mosekilde E., “The hyperbolic Plykin attractor can exist in neuron models”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3567–3578 | DOI | MR | Zbl

[8] Mandelshtam L. I., Lektsii po kolebaniyam, AN SSSR, M., 1955, 511 pp.

[9] Trubetskov D. I., Rozhnev A. G., Lineinye kolebaniya i volny, Fizmatlit, M., 2001, 416 pp.

[10] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp.

[11] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method for computing all of them. 1; 2”, Meccanica, 15 (1980), 9–30 | DOI

[12] Kuznetsov S. P., Dinamicheskii khaos, 2-e izd., Fizmatlit, M., 2006, 356 pp.