Topological analysis of one integrable system related to the rolling of a ball over a sphere
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 957-975.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new integrable system describing the rolling of a rigid body with a spherical cavity over a spherical base is considered. Previously the authors found the separation of variables for this system at the zero level of a linear (in angular velocity) first integral, whereas in the general case it is not possible to separate the variables. In this paper we show that the foliation into invariant tori in this problem is equivalent to the corresponding foliation in the Clebsch integrable system in rigid body dynamics (for which no real separation of variables has been found either). In particular, a fixed point of focus type is possible for this system, which can serve as a topological obstacle to the real separation of variables.
Keywords: integrable system, bifurcation diagram, conformally Hamiltonian system, critical periodic solution.
Mots-clés : bifurcation, Liouville foliation
@article{ND_2012_8_5_a6,
     author = {Alexey V. Borisov and Ivan S. Mamaev},
     title = {Topological analysis of one integrable system related to the rolling of a ball over a sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {957--975},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_5_a6/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
TI  - Topological analysis of one integrable system related to the rolling of a ball over a sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 957
EP  - 975
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_5_a6/
LA  - ru
ID  - ND_2012_8_5_a6
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Ivan S. Mamaev
%T Topological analysis of one integrable system related to the rolling of a ball over a sphere
%J Russian journal of nonlinear dynamics
%D 2012
%P 957-975
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_5_a6/
%G ru
%F ND_2012_8_5_a6
Alexey V. Borisov; Ivan S. Mamaev. Topological analysis of one integrable system related to the rolling of a ball over a sphere. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 957-975. http://geodesic.mathdoc.fr/item/ND_2012_8_5_a6/

[1] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571

[2] Duistermaat J. J., Chaplygin's sphere, 1 Sep. 2004, arXiv: math/0409019v1 [math.DS]

[3] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306

[4] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464

[5] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132

[6] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy: Geometriya, topologiya, klassifikatsiya, V 2-kh tt., UdGU, Izhevsk, 1999, 444 pp.; 448 с.

[7] Borisov A. V., Kilin A. A., Mamaev I. S., “Kachenie odnorodnogo shara po dinamicheski nesimmetrichnoi sfere”, Nelineinaya dinamika, 6:4 (2010), 869–889 ; Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483

[8] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338 ; Borisov A. V., Kilin A. A., Mamaev I. S., “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190

[9] Borisov A. V., Mamaev I. S., Marikhin V. G., “Yavnoe integrirovanie odnoi negolonomnoi zadachi”, Dokl. RAN, 422:4 (2008), 475–478

[10] Borisov A. V., Fedorov Yu. N., “O dvukh vidoizmenennykh integriruemykh zadachakh dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 1995, no. 6, 102–105 ; А. В. Борисов, И. С. Мамаев (ред.), Неголономные динамические системы: Интегрируемость, хаос, странные аттракторы, Сб. ст., Институт компьютерных исследований, М.–Ижевск, 2002, 67–70

[11] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki. 1; 2”, Regul. Chaotic Dyn., 1:1 (1996), 15–37

[12] A. V. Borisov, A. V. Tsyganov (red.), Sistema Klebsha. Razdelenie peremennykh, yavnoe integrirovanie, Sb. st., NITs «RKhD», Institut kompyuternykh issledovanii, M.–Izhevsk, 2009, 7–20

[13] A. V. Borisov, I. S. Mamaev, M. A. Sokolovskii (red.), Fundamentalnye i prikladnye problemy teorii vikhrei, Sb. st., Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 704 pp.

[14] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, LGU, L., 1988, 200 pp.

[15] Tsyganov A. V., “Deformatsii kanonicheskoi skobki Puassona dlya negolonomnykh sistem Chaplygina i Borisova–Mamaeva–Fedorova pri nulevoi konstante ploschadei, 1”, Nelineinaya dinamika, 7:3 (2011), 577–599 ; Цыганов А. В., “О бигамильтоновой структуре систем Чаплыгина и Борисова–Мамаева–Фёдорова при нулевой константе площадей, 2”, Нелинейная динамика, 8:1 (2012), 43–55

[16] Tsyganov A. V., “O puassonovykh strukturakh, voznikayuschikh pri rassmotrenii shara Chaplygina i ego obobschenii”, Nelineinaya dinamika, 8:2 (2012), 345–353

[17] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч., т. 1, ОГИЗ, М.–Л., 1948, 76–101