Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2012_8_5_a4, author = {Vladimir V. Beletskii and Alexander V. Rodnikov}, title = {Libration {Points} of the {Generalized} {Restricted} {Circular} {Problem} of {Three} {Bodies} in the case of imaginary distance between attracting centers}, journal = {Russian journal of nonlinear dynamics}, pages = {931--940}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2012_8_5_a4/} }
TY - JOUR AU - Vladimir V. Beletskii AU - Alexander V. Rodnikov TI - Libration Points of the Generalized Restricted Circular Problem of Three Bodies in the case of imaginary distance between attracting centers JO - Russian journal of nonlinear dynamics PY - 2012 SP - 931 EP - 940 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_5_a4/ LA - ru ID - ND_2012_8_5_a4 ER -
%0 Journal Article %A Vladimir V. Beletskii %A Alexander V. Rodnikov %T Libration Points of the Generalized Restricted Circular Problem of Three Bodies in the case of imaginary distance between attracting centers %J Russian journal of nonlinear dynamics %D 2012 %P 931-940 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2012_8_5_a4/ %G ru %F ND_2012_8_5_a4
Vladimir V. Beletskii; Alexander V. Rodnikov. Libration Points of the Generalized Restricted Circular Problem of Three Bodies in the case of imaginary distance between attracting centers. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 931-940. http://geodesic.mathdoc.fr/item/ND_2012_8_5_a4/
[1] Aksenov E. P., Grebennikov E. A., Demin V. G., “Obobschennaya zadacha dvukh nepodvizhnykh tsentrov i ee primenenie v teorii dvizheniya iskusstvennykh sputnikov Zemli”, Astronomicheskii zhurnal, 40:2 (1963), 363–375
[2] Szebehely V., Theory of orbits: The restricted problem of three bodies, Acad. Press, New York–London, 1967, 312 pp.
[3] Demin V. G., Dvizhenie iskusstvennogo sputnika v netsentralnom pole tyagoteniya, NITs «RKhD», Institut kompyuternykh issledovanii, M.–Izhevsk, 2010, 420 pp.
[4] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[5] Kosenko I. I., “O tochkakh libratsii vblizi gravitiruyuschego vraschayuschegosya trekhosnogo ellipsoida”, PMM, 45:1 (1981), 26–33
[6] Kosenko I. I., “Tochki libratsii v zadache o trekhosnom gravitiruyuschem ellipsoide: Geometriya oblasti ustoichivosti”, Kosmicheskie issledovaniya, 19:2 (1981), 200–209
[7] Vasilkova O. O., “Three-dimensional periodic motion in the vicinity of the equilibrium points of an asteroid”, Astron. Astrophys., 430:2 (2005), 713–723
[8] Beletskii V. V., “Obobschennaya ogranichennaya krugovaya zadacha trekh tel kak model dinamiki dvoinykh asteroidov”, Kosmicheskie issledovaniya, 45:6 (2007), 435–442
[9] Beletskii V. V., Rodnikov A. V., “Ob ustoichivosti treugolnykh tochek libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Kosmicheskie issledovaniya, 46:1 (2008), 42–50
[10] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, Journal of Vibroengineering, 10:4 (2008), 550–556
[11] Rodnikov A. V., “O dvizhenii materialnoi tochki vdol leera, zakreplennogo na pretsessiruyuschem tverdom tele”, Nelineinaya dinamika, 7:2 (2011), 295–311
[12] Beletskii V. V., Rodnikov A. V., “Komplanarnye tochki libratsii v obobschennoi ogranichennoi krugovoi zadache trekh tel”, Nelineinaya dinamika, 7:3 (2011), 569–576