Coherence resonance and synchronization of stochastic self-sustained oscillations in hard excitation oscillator
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 897-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

Phenomenon of coherence resonance and external synchronization of noise-induced stochastic oscillations in hard excitation oscillator are studied by means of natural experiments. Regions of synchronization on parameter plane are constructed. Experiments on synchronization in hard excitation oscillator without noise are carried out.
Keywords: coherence resonance, synchronization, noise-induced oscillators, hard excitation oscillator.
@article{ND_2012_8_5_a2,
     author = {Alexey V. Feoktistov and Vadim S. Anishchenko},
     title = {Coherence resonance and synchronization of stochastic self-sustained oscillations in hard excitation oscillator},
     journal = {Russian journal of nonlinear dynamics},
     pages = {897--911},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_5_a2/}
}
TY  - JOUR
AU  - Alexey V. Feoktistov
AU  - Vadim S. Anishchenko
TI  - Coherence resonance and synchronization of stochastic self-sustained oscillations in hard excitation oscillator
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 897
EP  - 911
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_5_a2/
LA  - ru
ID  - ND_2012_8_5_a2
ER  - 
%0 Journal Article
%A Alexey V. Feoktistov
%A Vadim S. Anishchenko
%T Coherence resonance and synchronization of stochastic self-sustained oscillations in hard excitation oscillator
%J Russian journal of nonlinear dynamics
%D 2012
%P 897-911
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_5_a2/
%G ru
%F ND_2012_8_5_a2
Alexey V. Feoktistov; Vadim S. Anishchenko. Coherence resonance and synchronization of stochastic self-sustained oscillations in hard excitation oscillator. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 5, pp. 897-911. http://geodesic.mathdoc.fr/item/ND_2012_8_5_a2/

[1] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466

[2] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett., 78 (1997), 775–778

[3] DeVille R. E. L., Vanden-Eijnden E., Muratov C. B., “Two distinct mechanisms of coherence in randomly perturbed dynamical systems”, Phys. Rev. E (3), 72:3 (2005), 031105, 10 pp.

[4] Hu B., Zhou Ch., “Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance”, Phys. Rev. E, 61:2 (2000), R1001–R1004

[5] Linder B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance”, Phys. Rev. E, 60:6 (1999), 7270–7276

[6] Setsinskii D. V., Postnov D. E., “Indutsirovannaya shumom kogerentnost v vozbudimoi sisteme s chastotno-zavisimoi obratnoi svyazyu”, Pisma v ZhTF, 31:7 (2005), 71–78

[7] Han S. K., Postnov D. E., Sosnovtseva O. V., Yim T. G., “Interacting coherence resonance oscillators”, Phys. Rev. Lett., 83:9 (1999), 1771–1774

[8] Ushakov O. V., Henneberger F., Khovanov I. A., Schimansky-Geier L., Zaks M. A., Wünsche H.-J., “Coherence resonance near a Hopf bifurcation”, Phys. Rev. Lett., 95:12 (2005), 123903, 4 pp.

[9] Soskin S. M., “Fluctuation spectrum peaks for systems where the oscillation frequency dependence on energy has an extremum”, Phys. A, 155:2 (1989), 401–429

[10] Hu G., Ditzinger T., Ning C. Z., Haken H., “Stochastic resonance without external periodic force”, Phys. Rev. Lett., 71:6 (1993), 807–810

[11] Hu G., Ditzinger T., Ning C. Z., “Resonance-like responses of autonomous nonlinear systems to white noise”, Phys. Rev. E, 50:5 (1994), 3508–3516

[12] Linder B., Schimansky-Geier L., “Coherence and stochastic resonance in a two-state system”, Phys. Rev. E, 61:6 (2000), 6103–6110

[13] Neiman A., Stone L., Saparin P., “Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems”, Phys. Rev. E, 56 (1997), 270–273

[14] Anischenko V. S., Astakhov S. V., Vadivasova T. E., Feoktistov A. V., “Chislennoe i eksperimentalnoe issledovanie vneshnei sinkhronizatsii dvukhchastotnykh kolebanii”, Nelineinaya dinamika, 5:2 (2009), 237–252

[15] Cizak M., Toral R., Mirasso C. R., “Coupling and feedback effects in excitable systems: Anticipated synchronyzation”, Modern Phys. Lett. B, 18:23 (2004), 1135–1155

[16] Cizak M., Toral R., Balle S., Marino F., “Dynamical mechanism of anticipating synchronization in excitable systems”, Phys. Rev. Lett., 93:11 (2004), 114102, 4 pp.

[17] Neiman A., Cornell-Bell A., Moss F., Schimansky-Geier L., “Noise-enhanced phase synchronization in excitable media”, Phys. Rev. Lett., 83:23 (1999), 4896–4899

[18] Kuznetsov A. P., Milovanov S. V., “Sinkhronizatsiya v sisteme s bifurkatsiei sliyaniya ustoichivogo i neustoichivogo predelnykh tsiklov”, PND, 11:4–5 (2003), 16–30