The motion of a body with variable mass geometry in a viscous fluid
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 815-836
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier–Stokes equations and equations of motion. A non-stationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid, which is caused by the motion of internal material points, in a gravitational field is explored. The possibility of motion of a body in an arbitrary given direction is shown.
Keywords:
finite-volume numerical method, Navier–Stokes equations, motion control.
Mots-clés : variable internal mass distribution
Mots-clés : variable internal mass distribution
@article{ND_2012_8_4_a9,
author = {Evgeny V. Vetchanin and Ivan S. Mamaev and Valentin A. Tenenev},
title = {The motion of a body with variable mass geometry in a viscous fluid},
journal = {Russian journal of nonlinear dynamics},
pages = {815--836},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2012_8_4_a9/}
}
TY - JOUR AU - Evgeny V. Vetchanin AU - Ivan S. Mamaev AU - Valentin A. Tenenev TI - The motion of a body with variable mass geometry in a viscous fluid JO - Russian journal of nonlinear dynamics PY - 2012 SP - 815 EP - 836 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2012_8_4_a9/ LA - ru ID - ND_2012_8_4_a9 ER -
%0 Journal Article %A Evgeny V. Vetchanin %A Ivan S. Mamaev %A Valentin A. Tenenev %T The motion of a body with variable mass geometry in a viscous fluid %J Russian journal of nonlinear dynamics %D 2012 %P 815-836 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2012_8_4_a9/ %G ru %F ND_2012_8_4_a9
Evgeny V. Vetchanin; Ivan S. Mamaev; Valentin A. Tenenev. The motion of a body with variable mass geometry in a viscous fluid. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 815-836. http://geodesic.mathdoc.fr/item/ND_2012_8_4_a9/