Rolling of a rigid body without slipping and spinning: kinematics and dynamics
Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 783-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate various kinematic properties of rolling of one rigid body on another both for the classical model of rolling without slipping (the velocities of bodies at the point of contact coincide) and for the model of rubber-rolling (with the additional condition that the spinning of the bodies relative to each other be excluded). Furthermore, in the case where both bodies are bounded by spherical surfaces and one of them is fixed, the equations of motion for a moving ball are represented in the form of the Chaplygin system. When the center of mass of the moving ball coincides with its geometric center, the equations of motion are represented in conformally Hamiltonian form, and in the case where the radii of the moving and fixed spheres coincides, they are written in Hamiltonian form.
Keywords: rolling without slipping, nonholonomic constraint, Chaplygin system, conformally Hamiltonian system.
@article{ND_2012_8_4_a7,
     author = {Alexey V. Borisov and Ivan S. Mamaev and Dmitrii V. Treschev},
     title = {Rolling of a rigid body without slipping and spinning: kinematics and dynamics},
     journal = {Russian journal of nonlinear dynamics},
     pages = {783--797},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2012_8_4_a7/}
}
TY  - JOUR
AU  - Alexey V. Borisov
AU  - Ivan S. Mamaev
AU  - Dmitrii V. Treschev
TI  - Rolling of a rigid body without slipping and spinning: kinematics and dynamics
JO  - Russian journal of nonlinear dynamics
PY  - 2012
SP  - 783
EP  - 797
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2012_8_4_a7/
LA  - ru
ID  - ND_2012_8_4_a7
ER  - 
%0 Journal Article
%A Alexey V. Borisov
%A Ivan S. Mamaev
%A Dmitrii V. Treschev
%T Rolling of a rigid body without slipping and spinning: kinematics and dynamics
%J Russian journal of nonlinear dynamics
%D 2012
%P 783-797
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2012_8_4_a7/
%G ru
%F ND_2012_8_4_a7
Alexey V. Borisov; Ivan S. Mamaev; Dmitrii V. Treschev. Rolling of a rigid body without slipping and spinning: kinematics and dynamics. Russian journal of nonlinear dynamics, Tome 8 (2012) no. 4, pp. 783-797. http://geodesic.mathdoc.fr/item/ND_2012_8_4_a7/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Kachenie bez vercheniya shara po ploskosti: otsutstvie invariantnoi mery v sisteme s polnym naborom integralov”, Nelineinaya dinamika, 8:3 (2012), 605–616

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307 | MR

[3] Borisov A. V., Mamaev I. S., “Izomorfizm i gamiltonovo predstavlenie nekotorykh negolonomnykh sistem”, Sib. matem. zhurn., 48:1 (2007), 33–45 | MR | Zbl

[4] Borisov A. V., Mamaev I. S., “Gamiltonizatsiya negolonomnykh sistem v okrestnosti invariantnykh mnogoobrazii”, Nelineinaya dinamika, 6:4 (2010), 829–854 ; Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[5] Borisov A. V., Mamaev I. S., “Kachenie neodnorodnogo shara po sfere bez vercheniya i krucheniya”, Nelineinaya dinamika, 2:4 (2006), 445–452 ; Borisov A. V., Mamaev I. S., “Rolling of a non-homogeneous ball over a sphere without slipping and twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., “Zakony sokhraneniya, ierarkhiya dinamiki i yavnoe integrirovanie negolonomnykh sistem”, Nelineinaya dinamika, 4:3 (2008), 223–280

[7] Veselova L. E., “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika, Sb. st., eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR

[8] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314

[9] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, AZ, Dec. 1999), v. 1, 431–435

[10] Borisov A. V., Mamaev I. S., “The rolling of rigid body on a plane and sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:1 (2003), 177–200 | MR

[11] Borisov A. V., Mamaev I. S., Kilin A. A., “Rolling of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:1 (2003), 201–220 | DOI | MR

[12] Ehlers K., Koiller J., “Rubber rolling: Geometry and dynamics of 2–3–5 distributions”, Proc. IUTAM Symp. on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), 469–480 | MR

[13] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4 sér., 1895, 397–417 | Zbl

[14] Beghin H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bulletin de la S. M. F., 57 (1929), 118–124 | MR | Zbl

[15] Koiler J., Ehlers K. M., “Rubber rolling over a sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR

[16] Levi M., “Geometric phases in the motion of rigid bodies”, Arch. Ration. Mech. Anal., 122 (1993), 213–229 | DOI | MR | Zbl

[17] Li Z., Canny J., “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1990), 62–72 | DOI

[18] Marigo A., Bicchi A., “Rolling bodies with regular surface: The holonomic case”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, eds. G. Ferreyra, R. Gardner, H. Hermes, H. Sussmann, AMS, Providence, RI, 1999, 241–256 | DOI | MR

[19] Bicchi A., Prattichizzo D., Sastry Sh. S., “Planning motions of rolling surfaces”, Proc. of the 34th IEEE Conf. on Decision and Control (New Orleans, LA, 13–15 Dec., 1995), v. 3, 2812–2817

[20] Walsh J. A., “The dynamics of circle homeomorphisms: A hands-on introduction”, Math. Mag., 72:1 (1999), 3–13 | MR | Zbl